These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 4879237)
21. Two compounds implicated in the function of the RC gene of Escherichia coli. Cashel M; Gallant J Nature; 1969 Mar; 221(5183):838-41. PubMed ID: 4885263 [No Abstract] [Full Text] [Related]
22. Nature of the penetration barrier in Escherichia coli K-12: effect of macromolecular inhibition of penetrability in strains containing the envA gene. Normark S; Westling B J Bacteriol; 1971 Oct; 108(1):45-50. PubMed ID: 4941566 [TBL] [Abstract][Full Text] [Related]
24. Translation of the genetic message. Ochoa S Naturwissenschaften; 1968 Nov; 55(11):505-14. PubMed ID: 4882370 [No Abstract] [Full Text] [Related]
25. Studies on the formation of transfer ribonucleic acid-ribosome complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action. Pestka S Biochem Biophys Res Commun; 1969 Aug; 36(4):589-95. PubMed ID: 4897408 [No Abstract] [Full Text] [Related]
28. [Synthesis of stable RNA by a stringent Escherichia coli strain during specific amino acid deprivation]. Galibert F; Eladari ME; Larsen CJ; Boiron M Eur J Biochem; 1970 Apr; 13(2):273-80. PubMed ID: 4909305 [No Abstract] [Full Text] [Related]
29. Inhibition of ribonucleic acid synthesis by nalidixic acid in Escherichia coli. Javor GT J Bacteriol; 1974 Oct; 120(1):282-6. PubMed ID: 4607671 [TBL] [Abstract][Full Text] [Related]
30. Mechanism of polypeptide chain termination. Translation of tandem amber termination codons by an amber suppressor transfer ribonucleic acid. Ghosh HP; Ghosh K; Ganoza MC J Biol Chem; 1972 Sep; 247(17):5322-6. PubMed ID: 4560195 [No Abstract] [Full Text] [Related]
31. Control of ribonucleic acid synthesis in Escherichia coli cells with altered transfer ribonucleic acid concentration. Ezekiel DH; Valulis B Biochim Biophys Acta; 1966 Oct; 129(1):123-39. PubMed ID: 5339104 [No Abstract] [Full Text] [Related]
32. Studies on the formation of transfer ribonucleic acid-ribosome complexes. IV. A new assay for codon recognition and interaction of transfer ribonucleic acid with 50 S subunits. Pestka S J Biol Chem; 1968 Aug; 243(15):4038-44. PubMed ID: 4875320 [No Abstract] [Full Text] [Related]
33. Inhibition of post-transcriptional modification of E. coli tRNA. Kitchingman GR; Fournier MJ Brookhaven Symp Biol; 1975 Jul; (26):44-52. PubMed ID: 1104099 [No Abstract] [Full Text] [Related]
34. The genetics of bacterial ribosomes. Davies J; Nomura M Annu Rev Genet; 1972; 6():203-34. PubMed ID: 4269096 [No Abstract] [Full Text] [Related]
35. Precursor molecules of transfer ribonucleic acids in Escherichia coli. Dijk J; Singhal RP J Biol Chem; 1974 Jan; 249(2):645-8. PubMed ID: 4588570 [No Abstract] [Full Text] [Related]
36. The mechanism of early inhibition by an RNA phage of protein and RNA synthesis in infected cells. Yamazaki H Virology; 1969 Mar; 37(3):429-36. PubMed ID: 4975944 [No Abstract] [Full Text] [Related]
37. Protein turnover in amino acid-starved strains of Escherichia coli K-12 differing in their ribonucleic acid control. Sussman AJ; Gilvarg C J Biol Chem; 1969 Nov; 244(22):6304-6. PubMed ID: 4900514 [No Abstract] [Full Text] [Related]
38. Chloramphenicol and the stimulation of ribonucleic acid synthesis in Escherichia coli. Kaplan S J Bacteriol; 1969 May; 98(2):587-92. PubMed ID: 4891260 [TBL] [Abstract][Full Text] [Related]
39. The adaptive responses of Escherichia coli to a feast and famine existence. Koch AL Adv Microb Physiol; 1971; 6():147-217. PubMed ID: 4950180 [No Abstract] [Full Text] [Related]
40. Thermolability of the stringent factor in rel mutants of Escherichia coli. Block R; Haseltine WA J Mol Biol; 1973 Jul; 77(4):625-9. PubMed ID: 4579452 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]