These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 488292)

  • 41. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord.
    Atkinson SL; Li YQ; Wong CS
    Int J Radiat Oncol Biol Phys; 2005 Jun; 62(2):535-44. PubMed ID: 15890598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Delayed radiation lesions of the human spinal cord. Report of five cases.
    Kristensson K; Molin B; Sourander P
    Acta Neuropathol; 1967 Aug; 9(1):34-44. PubMed ID: 6049792
    [No Abstract]   [Full Text] [Related]  

  • 43. Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation.
    Li YQ; Chen P; Haimovitz-Friedman A; Reilly RM; Wong CS
    Cancer Res; 2003 Sep; 63(18):5950-6. PubMed ID: 14522921
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphology and histochemistry of spinal cord and soleus muscle in rats grown under hypergravity.
    Krasnov IB; Polyakov IV; Ilyina-Kakueva EI; Drobyshev VI
    Physiologist; 1992 Feb; 35(1 Suppl):S216-7. PubMed ID: 1589511
    [No Abstract]   [Full Text] [Related]  

  • 45. Schwann cell myelination of the myelin deficient rat spinal cord following X-irradiation.
    Duncan ID; Hammang JP; Gilmore SA
    Glia; 1988; 1(3):233-9. PubMed ID: 2976042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Radiation-induced changes in the profile of spinal cord serotonin, prostaglandin synthesis, and vascular permeability.
    Siegal T; Pfeffer MR
    Int J Radiat Oncol Biol Phys; 1995 Jan; 31(1):57-64. PubMed ID: 7527800
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Histopathological and morphometric study of the late effects of heavy-ion irradiation on the spinal cord of the rat.
    Okada S; Okeda R; Matsushita S; Kawano A
    Radiat Res; 1998 Sep; 150(3):304-15. PubMed ID: 9728660
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord.
    Deng C; Gorrie C; Hayward I; Elston B; Venn M; Mackay-Sim A; Waite P
    J Neurosci Res; 2006 May; 83(7):1201-12. PubMed ID: 16498634
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Delayed infarction of spinal cord white matter following x-irradiation.
    Blakemore WF; Palmer AC
    J Pathol; 1982 Aug; 137(4):273-80. PubMed ID: 7097400
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Radioautographic evidence for the protracted proliferation of glial cells in the central nervous system of jimpy mice.
    Privat A; Valat J; Lachapelle F; Baumann N; Fulcrand J
    Brain Res; 1981 Oct; 254(3):411-6. PubMed ID: 7284858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Demyelination Occurred as the Secondary Damage Following Diffuse Axonal Loss in a Rat Model of Radiation Myelopathy.
    Wei L; Zhou Y; Liu CJ; Zheng K; You H
    Neurochem Res; 2017 Apr; 42(4):953-962. PubMed ID: 27933549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immature developmental pattern of the monosynaptic reflex in isolated spinal cord of glial mutant taiep rats.
    Fuenzalida M; Roncagliolo P; Bonansco C; Roncagliolo M
    Brain Res Dev Brain Res; 2004 Nov; 153(2):197-202. PubMed ID: 15527887
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of an astrocytic response to lesions of the spinal cord in the North American opossum: an immunohistochemical study using anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):10-7. PubMed ID: 8244527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glial fibrillary acidic protein (GFAP) in spinal cord of postnatal rat. An immunoperoxidase study in semithin sections.
    Bullon MM; Alvarez-Gago T; Fernandez-Ruiz B; Aguirre C
    Brain Res; 1984 May; 316(1):129-33. PubMed ID: 6375815
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Morphology and differentiation of radial glia in the developing rat spinal cord.
    McMahon SS; McDermott KW
    J Comp Neurol; 2002 Dec; 454(3):263-71. PubMed ID: 12442317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stereotactic radiosurgery improves locomotor recovery after spinal cord injury in rats.
    Zeman RJ; Wen X; Ouyang N; Rocchio R; Shih L; Alfieri A; Moorthy C; Etlinger JD
    Neurosurgery; 2008 Nov; 63(5):981-7; discussion 987-8. PubMed ID: 19005390
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Boron neutron capture irradiation of the rat spinal cord: histopathological evidence of a vascular-mediated pathogenesis.
    Morris GM; Coderre JA; Bywaters A; Whitehouse E; Hopewell JW
    Radiat Res; 1996 Sep; 146(3):313-20. PubMed ID: 8752310
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of 60 Co radiation on the cellular responses in degenerating dorsal columns in the rat spinal cord.
    Cavanagh JB; Hopewell JW; Chen FC
    Acta Neuropathol; 1971; 19(4):318-22. PubMed ID: 5143980
    [No Abstract]   [Full Text] [Related]  

  • 59. POST-NATAL GROWTH OF NEUROGLIA CELLS AND BLOOD VESSELS OF THE CERVICAL SPINAL CORD OF THE ALBINO MOUSE.
    SAKLA FB
    J Comp Neurol; 1965 Apr; 124():189-201. PubMed ID: 14330739
    [No Abstract]   [Full Text] [Related]  

  • 60. Supralethal total-body x-irradiation. Effects on the spinal cord of parabiont rats.
    Kury G; Warren S; Chute RN
    Arch Neurol; 1968 Jun; 18(6):703-7. PubMed ID: 5652997
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.