BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4883341)

  • 1. [Energy transfer in solid-state and membrane systems in photosynthesis].
    Nishimura M
    Seikagaku; 1968 Aug; 40(8):347-56. PubMed ID: 4883341
    [No Abstract]   [Full Text] [Related]  

  • 2. Proceedings: Changes in the physical parameters of photosynthetic membranes associated with energy transduction-some temperature-sensitive processes.
    Nishimura M
    J Biochem; 1976 Apr; 79(4):51P-52P. PubMed ID: 1084343
    [No Abstract]   [Full Text] [Related]  

  • 3. [Primary processes in energy transfer of photosynthesis (author's transl)].
    Nishimura M
    Tanpakushitsu Kakusan Koso; 1975 Mar; 20(4):301-17. PubMed ID: 169548
    [No Abstract]   [Full Text] [Related]  

  • 4. Early chemical events in photosynthesis: kinetics of oxidation of cytochromes of types c or f in cells, chloroplasts, and chromatophores.
    Chance B; DeVault D; Hildreth WW; Parson WW; Nishimura M
    Brookhaven Symp Biol; 1966; 19():115-31. PubMed ID: 5966902
    [No Abstract]   [Full Text] [Related]  

  • 5. Nicotinamide adenine dinucleotide photoreduction with Chromatium and Rhodospirillum rubrum chromatophores.
    Hinkson JW
    Arch Biochem Biophys; 1965 Dec; 112(3):478-87. PubMed ID: 4286495
    [No Abstract]   [Full Text] [Related]  

  • 6. Uncoupling and charge transfer in bacterial chromatophores.
    Montal M; Nishimura M; Chance B
    Biochim Biophys Acta; 1970 Nov; 223(1):183-8. PubMed ID: 5484051
    [No Abstract]   [Full Text] [Related]  

  • 7. Energy-linked reactions in photosynthetic bacteria. I. Succinatelinked ATP-driven NAD reduction by Rhodospirillum rubrum chromatophores.
    Keister DL; Yike NJ
    Arch Biochem Biophys; 1967 Aug; 121(2):415-22. PubMed ID: 4293589
    [No Abstract]   [Full Text] [Related]  

  • 8. The bacterial photosynthetic reaction center.
    Clayton RK
    Brookhaven Symp Biol; 1966; 19():62-70. PubMed ID: 5966926
    [No Abstract]   [Full Text] [Related]  

  • 9. Cytochrome C553 and bacteriochlorophyll interaction at 77 K in chromatophores and a subchromatophore preparation from Chromatium D.
    Dutton PL; Kihara T; McCray JA; Thornber JP
    Biochim Biophys Acta; 1971 Jan; 226(1):81-7. PubMed ID: 5549986
    [No Abstract]   [Full Text] [Related]  

  • 10. The sizes of the photosynthetic energy-transducing units in purple bacteria determined by single flash yield, titration by antibiotics and carotenoid absorption band shift.
    Nishimura M
    Biochim Biophys Acta; 1970 Jan; 197(1):69-77. PubMed ID: 5412035
    [No Abstract]   [Full Text] [Related]  

  • 11. Cytochrome photooxidations in Chromatiumchromatophores. Each P870 oxidizes two cytochrome C422 hemes.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):397-403. PubMed ID: 5363977
    [No Abstract]   [Full Text] [Related]  

  • 12. Fast membrane H+ binding in the light-activated state of Chromatium chromatophores.
    Chance B; Crofts AR; Nishimura M; Price B
    Eur J Biochem; 1970 Apr; 13(2):364-74. PubMed ID: 5439938
    [No Abstract]   [Full Text] [Related]  

  • 13. Primary reactions in photosynthesis.
    Malkin R
    Photochem Photobiol; 1975 Dec; 22(6):292-4. PubMed ID: 814555
    [No Abstract]   [Full Text] [Related]  

  • 14. Primary photosynthetic reactions in relation to transfer of excitation energy.
    Duysens LN
    Brookhaven Symp Biol; 1966; 19():71-80. PubMed ID: 5966927
    [No Abstract]   [Full Text] [Related]  

  • 15. The reaction between primary and secondary electron acceptors in bacterial photosynthesis.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):384-96. PubMed ID: 5363976
    [No Abstract]   [Full Text] [Related]  

  • 16. Nature of photochemical reactions in chromatophores of Chromatium D. II. Quantum yield of photooxidation of cytochromes in chromatium chromatophores.
    Takamiya K; Nishimura M
    Biochim Biophys Acta; 1974 Dec; 368(3):339-47. PubMed ID: 4451654
    [No Abstract]   [Full Text] [Related]  

  • 17. Photochemical activities of K3Fe(CN)6-treated chromatophores from Rhodospirillum rubrum.
    Beugeling T
    Biochim Biophys Acta; 1968 Jan; 153(1):143-53. PubMed ID: 5638384
    [No Abstract]   [Full Text] [Related]  

  • 18. Regulation of electron transfer by sidedness-dependent surface pH. Dependence of the rate of cytochrome c-555 reduction on H+ concentration in the surface region on the periplasmic side of photosynthetic membranes in whole cells, spheroplasts and chromatophores of Chromatium vinosum.
    Hashimoto K; Nishimura M
    J Biochem; 1981 Mar; 89(3):909-18. PubMed ID: 6270069
    [No Abstract]   [Full Text] [Related]  

  • 19. [Photophosphorylation and binding of phosphates to chromatophores in Rhodospirillum rubrum].
    Lutz HU; Bachofen R
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):387-93. PubMed ID: 4145605
    [No Abstract]   [Full Text] [Related]  

  • 20. Bacterial cytochromes. II. Functional aspects.
    Horio T; Kamen MD
    Annu Rev Microbiol; 1970; 24():399-428. PubMed ID: 4927136
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.