These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 4885467)
1. Zn2+ and Co2+-alkaline phosphatases of E. coli. A comparative kinetic study. Lazdunski C; Lazdunski M Eur J Biochem; 1969 Jan; 7(2):294-300. PubMed ID: 4885467 [No Abstract] [Full Text] [Related]
2. On the mechanism of the Zn2+ and Co2+-alkaline phosphatase of E. coli. Number of sites and anticooperativity. Lazdunski C; Petitclerc C; Chappelet D; Lazdunski M Biochem Biophys Res Commun; 1969 Nov; 37(5):744-9. PubMed ID: 4900985 [No Abstract] [Full Text] [Related]
3. Negative cooperativity and half of the sites reactivity. Alkaline phosphatases of Escherichia coli with Zn2+, Co2+, Cd2+, Mn2+, and Cu2+ in the active sites. Chappelet-Tordo D; Iwatsubo M; Lazdunski M Biochemistry; 1974 Aug; 13(18):3754-62. PubMed ID: 4604809 [No Abstract] [Full Text] [Related]
4. Hydrogen-tritium exchange of partially and fully reconstituted zinc and cobalt alkaline phosphatase of Escherichia coli. Brown EM; Ulmer DD; Vallee BL Biochemistry; 1974 Dec; 13(26):5328-34. PubMed ID: 4611482 [No Abstract] [Full Text] [Related]
5. The 5'-nucleotidase of Escherichia coli. II. Surface localization and purification of the Escherichia coli 5'-nucleotidase inhibitor. Neu HC J Biol Chem; 1967 Sep; 242(17):3905-11. PubMed ID: 5341266 [No Abstract] [Full Text] [Related]
6. The functional properties of the Zn2(plus)-and Co2(plus)-alkaline phosphatases of Escherichia coli. Labelling of the active site with pyrophosphate, complex formation with arsenate, and reinvestigation of the role of the zinc atoms. Petitclerc C; Lazdunski C; Chappelet D; Moulin A; Lazdunski M Eur J Biochem; 1970 Jun; 14(2):301-8. PubMed ID: 4319099 [No Abstract] [Full Text] [Related]
7. The biosynthesis of apo- and metalloalkaline phosphatases of Escherichia coli. Harris MI; Coleman JE J Biol Chem; 1968 Oct; 243(19):5063-73. PubMed ID: 4878432 [No Abstract] [Full Text] [Related]
8. Escherichia coli alkaline phosphatase. Metal binding, protein conformation, and quaternary structure. Applebury ML; Coleman JE J Biol Chem; 1969 Jan; 244(2):308-18. PubMed ID: 4886432 [No Abstract] [Full Text] [Related]
10. Isolation and properties of a small manganese-ion-stimulated bacterial alkaline phosphatase. Fitt PS; Peterkin PI Biochem J; 1976 Jul; 157(1):161-7. PubMed ID: 822841 [TBL] [Abstract][Full Text] [Related]
11. The Mn2plus-alkaline phosphatase of E. coli. Chappelet D; Lazdunski C; Petitclerc C; Lazdunski M Biochem Biophys Res Commun; 1970 Jul; 40(1):91-6. PubMed ID: 4318588 [No Abstract] [Full Text] [Related]
12. 31 P NMR studies on phosphate binding to the Zn 2+ , Co 2+ and Mn 2+ forms of escherichia coli alkaline phosphatase. Csopak H; Drakenberg T FEBS Lett; 1973 Mar; 30(3):296-300. PubMed ID: 4573438 [No Abstract] [Full Text] [Related]
13. pH- and anion-dependent salt modifications of alkaline phosphatase from a slightly halophilic Vibrio alginolyticus. Hayashi M; Unemoto T; Hayashi M Biochim Biophys Acta; 1973 Jul; 315(1):83-93. PubMed ID: 4582822 [No Abstract] [Full Text] [Related]
14. The 5'-nucleotidase of Escherichia coli. I. Purification and properties. Neu HC J Biol Chem; 1967 Sep; 242(17):3896-904. PubMed ID: 5341265 [No Abstract] [Full Text] [Related]
15. Zinc and cobalt alkaline phosphatases. Simpson RT; Vallee BL Ann N Y Acad Sci; 1969 Oct; 166(2):670-95. PubMed ID: 4907876 [No Abstract] [Full Text] [Related]
16. A mutationally altered alkaline phosphatase from Escherichia coli. I. Formation of an active enzyme in vitro and phenotypic suppression in vivo. Halford SE; Lennette DA; Kelley PM; Schlesinger MJ J Biol Chem; 1972 Apr; 247(7):2087-94. PubMed ID: 4552687 [No Abstract] [Full Text] [Related]
17. [Adenylate kinase in E. coli K 12 and in a thermosensitive mutant]. Theze J; Margarita D Ann Inst Pasteur (Paris); 1972 Aug; 123(2):157-69. PubMed ID: 4570553 [No Abstract] [Full Text] [Related]
18. Electron paramagnetic resonance studies on the copper(II) substituted alkaline phosphatase from Escherichia coli. Csopak H; Falk KE Biochim Biophys Acta; 1974 Jul; 359(1):22-32. PubMed ID: 4367983 [No Abstract] [Full Text] [Related]
19. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation. Hehir MJ; Murphy JE; Kantrowitz ER J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386 [TBL] [Abstract][Full Text] [Related]
20. Purification and properties of a new enzyme from Escherichia coli: nucleoside phosphocyl hydrolase. Spahr PF; Gesteland RF Eur J Biochem; 1970 Feb; 12(2):270-84. PubMed ID: 4318904 [No Abstract] [Full Text] [Related] [Next] [New Search]