BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 4885467)

  • 1. Zn2+ and Co2+-alkaline phosphatases of E. coli. A comparative kinetic study.
    Lazdunski C; Lazdunski M
    Eur J Biochem; 1969 Jan; 7(2):294-300. PubMed ID: 4885467
    [No Abstract]   [Full Text] [Related]  

  • 2. On the mechanism of the Zn2+ and Co2+-alkaline phosphatase of E. coli. Number of sites and anticooperativity.
    Lazdunski C; Petitclerc C; Chappelet D; Lazdunski M
    Biochem Biophys Res Commun; 1969 Nov; 37(5):744-9. PubMed ID: 4900985
    [No Abstract]   [Full Text] [Related]  

  • 3. Negative cooperativity and half of the sites reactivity. Alkaline phosphatases of Escherichia coli with Zn2+, Co2+, Cd2+, Mn2+, and Cu2+ in the active sites.
    Chappelet-Tordo D; Iwatsubo M; Lazdunski M
    Biochemistry; 1974 Aug; 13(18):3754-62. PubMed ID: 4604809
    [No Abstract]   [Full Text] [Related]  

  • 4. Hydrogen-tritium exchange of partially and fully reconstituted zinc and cobalt alkaline phosphatase of Escherichia coli.
    Brown EM; Ulmer DD; Vallee BL
    Biochemistry; 1974 Dec; 13(26):5328-34. PubMed ID: 4611482
    [No Abstract]   [Full Text] [Related]  

  • 5. The 5'-nucleotidase of Escherichia coli. II. Surface localization and purification of the Escherichia coli 5'-nucleotidase inhibitor.
    Neu HC
    J Biol Chem; 1967 Sep; 242(17):3905-11. PubMed ID: 5341266
    [No Abstract]   [Full Text] [Related]  

  • 6. The functional properties of the Zn2(plus)-and Co2(plus)-alkaline phosphatases of Escherichia coli. Labelling of the active site with pyrophosphate, complex formation with arsenate, and reinvestigation of the role of the zinc atoms.
    Petitclerc C; Lazdunski C; Chappelet D; Moulin A; Lazdunski M
    Eur J Biochem; 1970 Jun; 14(2):301-8. PubMed ID: 4319099
    [No Abstract]   [Full Text] [Related]  

  • 7. The biosynthesis of apo- and metalloalkaline phosphatases of Escherichia coli.
    Harris MI; Coleman JE
    J Biol Chem; 1968 Oct; 243(19):5063-73. PubMed ID: 4878432
    [No Abstract]   [Full Text] [Related]  

  • 8. Escherichia coli alkaline phosphatase. Metal binding, protein conformation, and quaternary structure.
    Applebury ML; Coleman JE
    J Biol Chem; 1969 Jan; 244(2):308-18. PubMed ID: 4886432
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetic properties of cobalt alkaline phosphatase.
    Gottesman M; Simpson RT; Vallee BL
    Biochemistry; 1969 Sep; 8(9):3776-83. PubMed ID: 4897950
    [No Abstract]   [Full Text] [Related]  

  • 10. Isolation and properties of a small manganese-ion-stimulated bacterial alkaline phosphatase.
    Fitt PS; Peterkin PI
    Biochem J; 1976 Jul; 157(1):161-7. PubMed ID: 822841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Mn2plus-alkaline phosphatase of E. coli.
    Chappelet D; Lazdunski C; Petitclerc C; Lazdunski M
    Biochem Biophys Res Commun; 1970 Jul; 40(1):91-6. PubMed ID: 4318588
    [No Abstract]   [Full Text] [Related]  

  • 12. 31 P NMR studies on phosphate binding to the Zn 2+ , Co 2+ and Mn 2+ forms of escherichia coli alkaline phosphatase.
    Csopak H; Drakenberg T
    FEBS Lett; 1973 Mar; 30(3):296-300. PubMed ID: 4573438
    [No Abstract]   [Full Text] [Related]  

  • 13. pH- and anion-dependent salt modifications of alkaline phosphatase from a slightly halophilic Vibrio alginolyticus.
    Hayashi M; Unemoto T; Hayashi M
    Biochim Biophys Acta; 1973 Jul; 315(1):83-93. PubMed ID: 4582822
    [No Abstract]   [Full Text] [Related]  

  • 14. The 5'-nucleotidase of Escherichia coli. I. Purification and properties.
    Neu HC
    J Biol Chem; 1967 Sep; 242(17):3896-904. PubMed ID: 5341265
    [No Abstract]   [Full Text] [Related]  

  • 15. Zinc and cobalt alkaline phosphatases.
    Simpson RT; Vallee BL
    Ann N Y Acad Sci; 1969 Oct; 166(2):670-95. PubMed ID: 4907876
    [No Abstract]   [Full Text] [Related]  

  • 16. A mutationally altered alkaline phosphatase from Escherichia coli. I. Formation of an active enzyme in vitro and phenotypic suppression in vivo.
    Halford SE; Lennette DA; Kelley PM; Schlesinger MJ
    J Biol Chem; 1972 Apr; 247(7):2087-94. PubMed ID: 4552687
    [No Abstract]   [Full Text] [Related]  

  • 17. [Adenylate kinase in E. coli K 12 and in a thermosensitive mutant].
    Theze J; Margarita D
    Ann Inst Pasteur (Paris); 1972 Aug; 123(2):157-69. PubMed ID: 4570553
    [No Abstract]   [Full Text] [Related]  

  • 18. Electron paramagnetic resonance studies on the copper(II) substituted alkaline phosphatase from Escherichia coli.
    Csopak H; Falk KE
    Biochim Biophys Acta; 1974 Jul; 359(1):22-32. PubMed ID: 4367983
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and properties of a new enzyme from Escherichia coli: nucleoside phosphocyl hydrolase.
    Spahr PF; Gesteland RF
    Eur J Biochem; 1970 Feb; 12(2):270-84. PubMed ID: 4318904
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.