These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4885467)

  • 21. The inducible alkaline phosphatase of rat heart: partial purification of the enzyme and its substrate specificity.
    Moss DW; Müller E; Pearse AG; Thomas DM
    J Mol Cell Cardiol; 1973 Apr; 5(2):191-6. PubMed ID: 4350130
    [No Abstract]   [Full Text] [Related]  

  • 22. Purification and characterization of adenosine triphosphate: ribonucleic acid adenyltransferase from Escherichia coli.
    Sippel AE
    Eur J Biochem; 1973 Aug; 37(1):31-40. PubMed ID: 4580885
    [No Abstract]   [Full Text] [Related]  

  • 23. The non-equivalence of the active sites and the mechanism of a mutationally altered E. coli alkaline phosphatase.
    Chappelet-Tordo D; Lazdunski C; Iwatsubo M; Lazdunski M
    Biochem Biophys Res Commun; 1975 Mar; 63(2):529-34. PubMed ID: 235925
    [No Abstract]   [Full Text] [Related]  

  • 24. Kinetics and inhibition of rat and avian alkaline phosphatases.
    van Belle H
    Gen Pharmacol; 1976; 7(1):53-8. PubMed ID: 9334
    [No Abstract]   [Full Text] [Related]  

  • 25. Partial purification and properties of acyl-CoA synthetase of Escherichia coli.
    Samuel D; Estroumza J; Ailhaud G
    Eur J Biochem; 1970 Feb; 12(3):576-82. PubMed ID: 4909455
    [No Abstract]   [Full Text] [Related]  

  • 26. Mutationally altered rate constants in the mechanism of alkaline phosphatase.
    Halford SE; Schlesinger MJ
    Biochem J; 1974 Sep; 141(3):845-52. PubMed ID: 4618778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the metal binding sites of Escherichia coli isoleucyl-tRNA synthetase.
    Xu B; Trawick B; Krudy GA; Phillips RM; Zhou L; Rosevear PR
    Biochemistry; 1994 Jan; 33(2):398-402. PubMed ID: 8286369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemostat culture of Escherichia coli K-12 limited by the activity of alkaline phosphatase.
    King SL; Francis JC
    Appl Microbiol; 1975 Aug; 30(2):267-70. PubMed ID: 240310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. L-glycerol-3-phosphate dehydrogenase from Escherichia coli.
    Spector DJ; Pizer LI
    Methods Enzymol; 1975; 41():249-54. PubMed ID: 236446
    [No Abstract]   [Full Text] [Related]  

  • 30. Structural and activational zinc in Escherichia coli alkaline phosphatase.
    Trotman CN; Greenwood C
    Biochem J; 1971 Jan; 121(1):12P. PubMed ID: 5000593
    [No Abstract]   [Full Text] [Related]  

  • 31. The effect of pH, temperature, and organic solvents on the kinetic parameters of Escherichia coli alkaline phosphatase.
    Krishnaswamy M; Kenkare UW
    J Biol Chem; 1970 Aug; 245(15):3956-63. PubMed ID: 4923941
    [No Abstract]   [Full Text] [Related]  

  • 32. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J; Stieglitz KA; Kantrowitz ER
    Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of the zinc dissociation constants of alkaline phosphatase from Escherichia coli by equilibration with zinc ion buffers.
    Cohen SR; Wilson IB
    Biochemistry; 1966 Mar; 5(3):904-9. PubMed ID: 5330067
    [No Abstract]   [Full Text] [Related]  

  • 34. Phosphoryl transfer from o-carboxyphenyl phosphate to tri(hydroxymethyl)-aminomethane catalysed by alkaline phosphatase from E. coli.
    Herraez HA; Burguillo FJ; Roig MG; Usero JL
    Int J Biochem; 1980; 11(6):511-8. PubMed ID: 6991307
    [No Abstract]   [Full Text] [Related]  

  • 35. Metalloalkaline phosphatases from Bacillus subtilis: physicochemical and enzymatic properties.
    Yoshizumi FK; Coleman JE
    Arch Biochem Biophys; 1974 Jan; 160(1):255-68. PubMed ID: 4208169
    [No Abstract]   [Full Text] [Related]  

  • 36. A water-mediated salt link in the catalytic site of Escherichia coli alkaline phosphatase may influence activity.
    Xu X; Kantrowitz ER
    Biochemistry; 1991 Aug; 30(31):7789-96. PubMed ID: 1907846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of hydrolysis of O-phosphorothioates and inorganic thiophosphate by Escherichia coli alkaline phosphatase.
    Chlebowski JF; Coleman JE
    J Biol Chem; 1974 Nov; 249(22):7192-202. PubMed ID: 4612034
    [No Abstract]   [Full Text] [Related]  

  • 38. Zinc stoichiometry in Escherichia coli alkaline phosphatase. Studies by 31P NMR and ion-exchange chromatography.
    Bock JL; Kowalsky A
    Biochim Biophys Acta; 1978 Sep; 526(1):135-46. PubMed ID: 28775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of magnesium in Escherichia coli alkaline phosphatase.
    Anderson RA; Bosron WF; Kennedy FS; Vallee BL
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2989-93. PubMed ID: 1103131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.