These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 4889009)

  • 21. Mechanism of the reaction catalyzed by the catalytic subunit of aspartate transcarbamylase. Kinetic studies with carbamyl phosphate as substrate.
    Heyde E; Nagabhushanam A; Morrison JF
    Biochemistry; 1973 Nov; 12(23):4718-26. PubMed ID: 4589945
    [No Abstract]   [Full Text] [Related]  

  • 22. Subunit structure of aspartate transcarbamylase from Escherichia coli.
    Rosenbusch JP; Weber K
    J Biol Chem; 1971 Mar; 246(6):1644-57. PubMed ID: 4926546
    [No Abstract]   [Full Text] [Related]  

  • 23. Response to the adenylate energy charge by Escherichia coli aspartate transcarbamylase and its catalytic subunit.
    Bigler WN; Atkinson DE
    Biochem Biophys Res Commun; 1969 Aug; 36(3):381-6. PubMed ID: 4898377
    [No Abstract]   [Full Text] [Related]  

  • 24. Relaxation spectra of aspartate transcarbamylase. Interaction of the native enzyme with an adenosine 5'-triphosphate analog.
    Wu CW; Hammes GG
    Biochemistry; 1973 Mar; 12(7):1400-8. PubMed ID: 4572360
    [No Abstract]   [Full Text] [Related]  

  • 25. Conformational changes in aspartate transcarbamylase. IV. Ligand effects on intersubunit interactions.
    Colman PD; Markus G
    J Biol Chem; 1972 Jun; 247(12):3829-37. PubMed ID: 4555951
    [No Abstract]   [Full Text] [Related]  

  • 26. An aspartate transcarbamylase lacking catalytic subunit interactions. II. Regulatory subunits are responsible for the lack of co-operative interactions between catalytic sites. Drastic feedback inhibition does not restore these interactions.
    Kerbiriou D; Hervé G
    J Mol Biol; 1973 Aug; 78(4):687-702. PubMed ID: 4587135
    [No Abstract]   [Full Text] [Related]  

  • 27. Allosteric interactions in aspartate transcarbamylase. I. Binding of specific ligands to the native enzyme and its isolated subunits.
    Changeux JP; Gerhart JC; Schachman HK
    Biochemistry; 1968 Feb; 7(2):531-8. PubMed ID: 4868539
    [No Abstract]   [Full Text] [Related]  

  • 28. Allosteric interactions in aspartate transcarbamylase. 3. Interpretation of experimental data in terms of the model of Monod, Wyman, and Changeux.
    Changeux JP; Rubin MM
    Biochemistry; 1968 Feb; 7(2):553-61. PubMed ID: 4868541
    [No Abstract]   [Full Text] [Related]  

  • 29. Conformational studies on the nitrated catalytic subunit of aspartate transcarbamylase.
    Kirschner MW; Schachman HK
    Biochemistry; 1973 Jul; 12(16):2987-97. PubMed ID: 4730495
    [No Abstract]   [Full Text] [Related]  

  • 30. A model for nucleotide regulation of aspartate transcarbamylase.
    London RE; Schmidt PG
    Biochemistry; 1972 Aug; 11(16):3136-42. PubMed ID: 4557519
    [No Abstract]   [Full Text] [Related]  

  • 31. Conformational changes in aspartate transcarbamylase. II. Concerted or sequential mechanism?
    McClintock DK; Markus G
    J Biol Chem; 1969 Jan; 244(1):36-42. PubMed ID: 4886430
    [No Abstract]   [Full Text] [Related]  

  • 32. 2-thiouridine 5'-phosphate and its inhibition of aspartate transcarbamylase.
    Goodrich ME; Cardeilhac P
    Biochim Biophys Acta; 1970 Dec; 222(3):621-6. PubMed ID: 4924866
    [No Abstract]   [Full Text] [Related]  

  • 33. Electron microscopy of aspartate transcarbamylase and its catalytic subunit.
    Richards KE; Williams RC
    Biochemistry; 1972 Aug; 11(18):3393-5. PubMed ID: 4560263
    [No Abstract]   [Full Text] [Related]  

  • 34. Aspartate transcarbamylase. The use of primary kinetic and solvent deuterium isotope effects to delineate some aspects of the mechanism.
    Stark GR
    J Biol Chem; 1971 May; 246(9):3064-8. PubMed ID: 4928898
    [No Abstract]   [Full Text] [Related]  

  • 35. An equilibrium binding study of the interaction of aspartate transcarbamylase with cytidine 5'-triphosphate and adenosine 5'-triphosphate.
    Matsumoto S; Hammes GG
    Biochemistry; 1973 Mar; 12(7):1388-94. PubMed ID: 4572358
    [No Abstract]   [Full Text] [Related]  

  • 36. Studies of parameters affecting the allosteric nature of phosphoenolpyruvate carboxylase of Escherichia coli.
    Corwin LM; Fanning GR
    J Biol Chem; 1968 Jun; 243(12):3517-25. PubMed ID: 4872182
    [No Abstract]   [Full Text] [Related]  

  • 37. Modification of three active site lysine residues in the catalytic subunit of aspartate transcarbamylase by D- and L-bromosuccinate.
    Lauritzen AM; Lipscomb WN
    J Biol Chem; 1982 Feb; 257(3):1312-9. PubMed ID: 6799505
    [No Abstract]   [Full Text] [Related]  

  • 38. Ordered substrate binding and evidence for a thermally induced change in mechanism for E. coli aspartate transcarbamylase.
    Wedler FC; Gasser FJ
    Arch Biochem Biophys; 1974 Jul; 163(1):57-68. PubMed ID: 4604861
    [No Abstract]   [Full Text] [Related]  

  • 39. Bohr effect in Escherichia coli aspartate transcarbamylase. Linkages between substrate binding, proton binding, and conformational transitions.
    Allwell NM; Hofmann GE; Zaug A; Lennick M
    Biochemistry; 1979 Jul; 18(14):3008-15. PubMed ID: 37893
    [No Abstract]   [Full Text] [Related]  

  • 40. Aspartate transcarbamylase. A study of possible roles for the sulfhydryl group at the active site.
    Jacobson GR; Stark GR
    J Biol Chem; 1973 Dec; 248(23):8003-14. PubMed ID: 4584821
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.