These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 4889152)

  • 1. The significance of ribokinase for ribose utilization by Escherichia coli.
    Anderson A; Cooper RA
    Biochim Biophys Acta; 1969 Feb; 177(1):163-5. PubMed ID: 4889152
    [No Abstract]   [Full Text] [Related]  

  • 2. Suppression of dual-effect mutants of the L-ribulokinase structural gene of Escherichia coli B/r.
    Abou-Sabe M
    Can J Microbiol; 1971 Aug; 17(8):1105-14. PubMed ID: 4938114
    [No Abstract]   [Full Text] [Related]  

  • 3. Biochemical and genetical studies on ribose catabolism in Escherichia coli K12.
    Anderson A; Cooper RA
    J Gen Microbiol; 1970 Aug; 62(3):335-9. PubMed ID: 4924622
    [No Abstract]   [Full Text] [Related]  

  • 4. Thymineless mutants of Escherichia coli with deficiencies in deoxyribomutase and deoxyriboaldolase.
    Munch-Petersen A
    Biochim Biophys Acta; 1968 Jun; 161(1):279-82. PubMed ID: 4873559
    [No Abstract]   [Full Text] [Related]  

  • 5. [The activity of uridine kinase in T2 phage-infected cells of Escherichia coli].
    Pravdina NF; Galegov GA
    Biokhimiia; 1968; 33(6):1226-31. PubMed ID: 4885160
    [No Abstract]   [Full Text] [Related]  

  • 6. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli.
    Kornberg HL; Reeves RE
    Biochem J; 1972 Aug; 128(5):1339-44. PubMed ID: 4345358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of ribose metabolism in Escherichia coli. I. The ribose catabolic pathway.
    David J; Wiesmeyer H
    Biochim Biophys Acta; 1970 Apr; 208(1):45-55. PubMed ID: 4909662
    [No Abstract]   [Full Text] [Related]  

  • 8. Genetic regulation of the constitutive D-ribose operon in Escherichia coli B/r.
    Abou-Sabé M; Ratner PL
    Biochim Biophys Acta; 1977 Jun; 476(4):321-32. PubMed ID: 195611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification, characterization, and crystallization of Escherichia coli ribokinase.
    Sigrell JA; Cameron AD; Jones TA; Mowbray SL
    Protein Sci; 1997 Nov; 6(11):2474-6. PubMed ID: 9385653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning, expression and characterization of ribokinase of Leishmania major.
    Ogbunude PO; Lamour N; Barrett MP
    Acta Biochim Biophys Sin (Shanghai); 2007 Jun; 39(6):462-6. PubMed ID: 17558452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of D-ribose-positive revertants of Escherichia coli B-r.
    Abou-Sabe M
    J Gen Microbiol; 1971 Mar; 65(3):375-7. PubMed ID: 4933804
    [No Abstract]   [Full Text] [Related]  

  • 12. Control of xylose metabolism in Escherichia coli.
    David JD; Wiesmeyer H
    Biochim Biophys Acta; 1970 Mar; 201(3):497-9. PubMed ID: 4908641
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of some physicochemical and catalytic properties of glutamate decarboxylase from various Escherichia coli K-12 sources.
    Lupo M; Halpern YS
    Biochim Biophys Acta; 1970 May; 206(2):295-304. PubMed ID: 4912202
    [No Abstract]   [Full Text] [Related]  

  • 14. Interaction of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system with adenylate cyclase of Escherichia coli.
    Peterkofsky A; Gazdar C
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2920-4. PubMed ID: 1103128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane signaling to Escherichia coli adenylate cyclase via a cascade reaction with sugar transport systems.
    Peterkofsky A
    Adv Cyclic Nucleotide Res; 1978; 9():611-9. PubMed ID: 352103
    [No Abstract]   [Full Text] [Related]  

  • 16. [D-ribokinase of the yeast Candida pulcherrima (Metschnikowia pulcherrima)].
    Karasevich IuN; Ivoĭlov VS
    Mikrobiologiia; 1972; 41(4):581-5. PubMed ID: 5084507
    [No Abstract]   [Full Text] [Related]  

  • 17. Multiple genetic changes determine ribose utilization by Novikoff hepatoma cell variants.
    Jargiello P
    Biochim Biophys Acta; 1980 Nov; 632(4):507-16. PubMed ID: 6254575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme organization in the proline biosynthetic pathway of Escherichia coli.
    Gamper H; Moses V
    Biochim Biophys Acta; 1974 Jun; 354(1):75-87. PubMed ID: 4152574
    [No Abstract]   [Full Text] [Related]  

  • 19. Local and non-local interactions of fluxes mediated by the glucose and galactoside permeases of Escherichia coli.
    Koch AL
    Biochim Biophys Acta; 1971 Oct; 249(1):197-215. PubMed ID: 4946620
    [No Abstract]   [Full Text] [Related]  

  • 20. [Effect of a mutational lesion to the phosphoenolpyruvate-dependent phosphotransferase system on the transport of hydrolyzable beta-galactosides in Escherichia coli K12].
    Bol'shakova TN; Burd GI; Gershanovich VN
    Biokhimiia; 1974; 39(4):808-10. PubMed ID: 4613390
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.