These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 4890974)

  • 1. Survival of Clostridium botulinum spores in foods treated by heat, ionizing radiation, or related procedures.
    Ingram M; Roberts TA
    Ann Inst Pasteur Lille; 1968; 19():123-37. PubMed ID: 4890974
    [No Abstract]   [Full Text] [Related]  

  • 2. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M; Kiviniemi K; Korkeala H
    Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The problems and results of an incidence study of the spores of Clostridium botulinum in convenience foods.
    Insalata NF; Witzeman JS; Berman JH
    Health Lab Sci; 1970 Jan; 7(1):54-8. PubMed ID: 4905874
    [No Abstract]   [Full Text] [Related]  

  • 4. Toxicity of spores of Clostridium botulinum strain 33A in irradiated ground beef.
    Fernandez E; Tang T; Grecz N
    J Gen Microbiol; 1969 Apr; 56(1):15-21. PubMed ID: 4891925
    [No Abstract]   [Full Text] [Related]  

  • 5. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin.
    Del Torre M; Stecchini ML; Braconnier A; Peck MW
    Int J Food Microbiol; 2004 Nov; 96(2):115-31. PubMed ID: 15364467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survey of infant foods for Clostridium botulinum spores.
    Guilfoyle DE; Yager JF
    J Assoc Off Anal Chem; 1983 Sep; 66(5):1302-4. PubMed ID: 6355058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined irradiation-heat processing of canned foods. II. Raw ground beef inoculated with spores of Clostridium botulinum.
    KEMPE LL; GRAIKOSKI JT; BONVENTRE PF
    Appl Microbiol; 1958 Jul; 6(4):261-3. PubMed ID: 13559976
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of irradiation temperature in the range--196 to 95C on the resistance of spores of Clostridium botulinum 33A in cooked beef.
    Grecz N; Walker AA; Anellis A; Berkowitz D
    Can J Microbiol; 1971 Feb; 17(2):135-42. PubMed ID: 4926793
    [No Abstract]   [Full Text] [Related]  

  • 9. Growth and toxin production of Clostridium botulinum types E, nonproteolytic B, and F in nonirradiated and irradiated fisheries products in the temperature range of 38 degrees to 50 degrees F. TID-24882.
    Eklund MW; Poysky FT
    TID Rep; 1966 Jan; ():1-70. PubMed ID: 4905222
    [No Abstract]   [Full Text] [Related]  

  • 10. Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores.
    Gao YL; Ju XR
    J Microbiol Methods; 2008 Jan; 72(1):20-8. PubMed ID: 18068839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the influence of electron beam irradiation on the heat resistance of Bacillus cereus spores.
    Valero M; Sarrías JA; Alvarez D; Salmerón MC
    Food Microbiol; 2006 Jun; 23(4):367-71. PubMed ID: 16943026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Studies on the time of survival of Cl. perfringens in a sample of naturally contaminated meat preserved at +4 degrees, and on the heat resistance of its spores].
    Del Vecchio V; D'Arca SU; D'Arca Simonetti A; Mastroeni I
    Nuovi Ann Ig Microbiol; 1969; 20(6):477-85. PubMed ID: 4318339
    [No Abstract]   [Full Text] [Related]  

  • 13. The significance of Clostridium botulinum type E in the application of radiation-pasteurization process to Pacific crab meat and flounder. TID-24880.
    Eklund MW; Poysky FT
    TID Rep; 1965 May; ():1-72. PubMed ID: 4902857
    [No Abstract]   [Full Text] [Related]  

  • 14. [Detection of healthy carriers of Clostridium perfringens with thermoresistant spores in the personnel working in a food industry].
    Mastroeni I; Tarsitani G
    Nuovi Ann Ig Microbiol; 1970; 21(6):512-20. PubMed ID: 4329406
    [No Abstract]   [Full Text] [Related]  

  • 15. Incidence study of spores of Clostridium botulinum in convenience foods.
    Insalata NF; Witzeman SJ; Fredericks GJ; Sunga FC
    Appl Microbiol; 1969 Apr; 17(4):542-4. PubMed ID: 4890746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of peroxyacetic acid-based sanitizer, heat and ultrasonic waves on the survival of Clostridium estertheticum spores in vitro.
    Broda DM
    Lett Appl Microbiol; 2007 Sep; 45(3):336-41. PubMed ID: 17718849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue?
    Peck MW
    J Appl Microbiol; 2006 Sep; 101(3):556-70. PubMed ID: 16907806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation injury of Clostridium botulinum spores in cured meat.
    Greenberg RA; Bladel BO; Zingelmann WJ
    Appl Microbiol; 1965 Sep; 13(5):743-8. PubMed ID: 5325937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The significance of Clostridium botulinum type E in the application of radiation-pasteurization process to Pacific crab meat and flounder. TID-24883.
    Eklund MW; Poysky FT; Wieler DI
    TID Rep; 1965 May; ():1-90. PubMed ID: 4902858
    [No Abstract]   [Full Text] [Related]  

  • 20. Heat resistance and recovery of spores of non-proteolytic Clostridium botulinum in relation to refrigerated, processed foods with an extended shelf-life.
    Lund BM; Peck MW
    Soc Appl Bacteriol Symp Ser; 1994; 23():115S-128S. PubMed ID: 8047905
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.