These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4893577)

  • 1. Alterations in the structure and function of Escherichia coli alkaline phosphatase due to Zn2+ binding.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1969 Feb; 8(2):588-93. PubMed ID: 4893577
    [No Abstract]   [Full Text] [Related]  

  • 2. Formation and properties of a tetrameric form of Escherichia coli alkaline phosphatase.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1969 Nov; 8(11):4278-82. PubMed ID: 4900990
    [No Abstract]   [Full Text] [Related]  

  • 3. Escherichia coli alkaline phosphatase. Metal binding, protein conformation, and quaternary structure.
    Applebury ML; Coleman JE
    J Biol Chem; 1969 Jan; 244(2):308-18. PubMed ID: 4886432
    [No Abstract]   [Full Text] [Related]  

  • 4. A mutationally altered alkaline phosphatase from Escherichia coli. II. Structural and catalytic properties of the activated enzyme.
    Halford SE; Lennette DA; Schlesinger MJ
    J Biol Chem; 1972 Apr; 247(7):2095-101. PubMed ID: 4552688
    [No Abstract]   [Full Text] [Related]  

  • 5. Two differentiable classes of metal atoms in alkaline phosphatase of Escherichia coli.
    Simpson RT; Vallee BL
    Biochemistry; 1968 Dec; 7(12):4343-50. PubMed ID: 4882708
    [No Abstract]   [Full Text] [Related]  

  • 6. The optical rotatory dispersion of MS2 bacteriophage.
    Oriel PJ; Koenig JA
    Arch Biochem Biophys; 1968 Sep; 127(1):274-82. PubMed ID: 4880549
    [No Abstract]   [Full Text] [Related]  

  • 7. Conformational states of the subunit of Escherichia coli alkaline phosphatase.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1967 Nov; 6(11):3552-9. PubMed ID: 4864145
    [No Abstract]   [Full Text] [Related]  

  • 8. Some kinetics of the interaction of divalent cations with glutamine synthetase from Escherichia coli. Metal ion induced conformational changes.
    Hunt JB; Ginsburg A
    Biochemistry; 1972 Sep; 11(20):3723-35. PubMed ID: 4403683
    [No Abstract]   [Full Text] [Related]  

  • 9. Hydrogen ion equilibria of conformational states of Escherichia coli alkaline phosphatase.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1968 Jun; 7(6):2080-5. PubMed ID: 4873170
    [No Abstract]   [Full Text] [Related]  

  • 10. Phosphoramidic acids. A new class of nonspecific substrates for alkaline phosphatase from Escherichia coli.
    Snyder SL; Wilson IB
    Biochemistry; 1972 Apr; 11(9):1616-23. PubMed ID: 4554950
    [No Abstract]   [Full Text] [Related]  

  • 11. A role for zinc in the quaternary structure of aspartate transcarbamylase from Escherichia coli.
    Nelbach ME; Pigiet VP; Gerhart JC; Schachman HK
    Biochemistry; 1972 Feb; 11(3):315-27. PubMed ID: 4550953
    [No Abstract]   [Full Text] [Related]  

  • 12. The biosynthesis of apo- and metalloalkaline phosphatases of Escherichia coli.
    Harris MI; Coleman JE
    J Biol Chem; 1968 Oct; 243(19):5063-73. PubMed ID: 4878432
    [No Abstract]   [Full Text] [Related]  

  • 13. Zinc and cobalt alkaline phosphatases.
    Simpson RT; Vallee BL
    Ann N Y Acad Sci; 1969 Oct; 166(2):670-95. PubMed ID: 4907876
    [No Abstract]   [Full Text] [Related]  

  • 14. Sequential chemical modifications of tyrosyl residues in alkaline phosphatase of Escherichia coli.
    Christen P; Vallee BL; Simpson RT
    Biochemistry; 1971 Apr; 10(8):1377-84. PubMed ID: 4325600
    [No Abstract]   [Full Text] [Related]  

  • 15. The enzymatic synthesis of poly 4-thiouridylic acid by polynucleotide phosphorylase from Escherichia coli.
    Simuth J; Scheit KH; Gottschalk EM
    Biochim Biophys Acta; 1970 Apr; 204(2):371-80. PubMed ID: 4909651
    [No Abstract]   [Full Text] [Related]  

  • 16. 35Cl nuclear magnetic resonance study of zinc and phosphate binding of E. coli alkaline phosphatase.
    Norne JE; Csopak H; Lindman B
    Arch Biochem Biophys; 1974 Jun; 162(2):552-9. PubMed ID: 4209891
    [No Abstract]   [Full Text] [Related]  

  • 17. Human placental alkaline phosphatase. II. Molecular and subunit properties of the enzyme.
    Sussman HH; Gottlieb AJ
    Biochim Biophys Acta; 1969 Nov; 194(1):170-9. PubMed ID: 4901000
    [No Abstract]   [Full Text] [Related]  

  • 18. The functional properties of the Zn2(plus)-and Co2(plus)-alkaline phosphatases of Escherichia coli. Labelling of the active site with pyrophosphate, complex formation with arsenate, and reinvestigation of the role of the zinc atoms.
    Petitclerc C; Lazdunski C; Chappelet D; Moulin A; Lazdunski M
    Eur J Biochem; 1970 Jun; 14(2):301-8. PubMed ID: 4319099
    [No Abstract]   [Full Text] [Related]  

  • 19. Enzymatic synthesis and properties of 8-bromoguanylic acid oligomers.
    Yuki R; Yoshida H
    Biochim Biophys Acta; 1971 Aug; 246(2):206-15. PubMed ID: 4332210
    [No Abstract]   [Full Text] [Related]  

  • 20. On the mechanism of the Zn2+ and Co2+-alkaline phosphatase of E. coli. Number of sites and anticooperativity.
    Lazdunski C; Petitclerc C; Chappelet D; Lazdunski M
    Biochem Biophys Res Commun; 1969 Nov; 37(5):744-9. PubMed ID: 4900985
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.