These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 4896238)

  • 41. Thiamin: twenty years ago.
    Krampitz LO
    Ann N Y Acad Sci; 1982; 378():1-6. PubMed ID: 6805382
    [No Abstract]   [Full Text] [Related]  

  • 42. Reaction mechanisms of thiamin diphosphate enzymes: redox reactions.
    Tittmann K
    FEBS J; 2009 May; 276(9):2454-68. PubMed ID: 19476487
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular weight and coenzyme content of pyruvate decarboxylase from brewer's yeast.
    Ullrich J; Wittorf JH; Gubler CJ
    Biochim Biophys Acta; 1966 Mar; 113(3):595-604. PubMed ID: 5916344
    [No Abstract]   [Full Text] [Related]  

  • 44. A bulky hydrophobic residue is not required to maintain the V-conformation of enzyme-bound thiamin diphosphate.
    Andrews FH; Tom AR; Gunderman PR; Novak WR; McLeish MJ
    Biochemistry; 2013 May; 52(18):3028-30. PubMed ID: 23607689
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [On the theory of thiamine pyrophosphate action, 8. Importance of the intercyclic methylene bridge for thiamine pyrophosphate action].
    Schellenberger A; Hanke H; Hübner G
    Hoppe Seylers Z Physiol Chem; 1968 Apr; 349(4):517-8. PubMed ID: 5652066
    [No Abstract]   [Full Text] [Related]  

  • 46. The stereochemistry at carbon 3 of pyruvate lyase condensation products. Aldolases forming condensation products racemic at carbon 4.
    Meloche HP; Mehler L
    J Biol Chem; 1973 Sep; 248(18):6333-8. PubMed ID: 4581103
    [No Abstract]   [Full Text] [Related]  

  • 47. Pyruvic decarboxylase and acetoin formation in Athiorhodaceae.
    Qadri SM; Hoare DS
    Can J Microbiol; 1973 Sep; 19(9):1137-43. PubMed ID: 4754749
    [No Abstract]   [Full Text] [Related]  

  • 48. [The consequences of prolonged administration of an excess of thiamine: changes in carbohydrate, protein and lipid metabolism].
    Ostrovskiĭ IuM; Lukashik NK; Trebukhina RV; Dosta GA; Mazhul' AG; Nepochelovich NS; Komarova BP; Karput' NS; Larin FS; Makarina-Kibak LIa
    Vopr Med Khim; 1970; 16(3):316-22. PubMed ID: 5455889
    [No Abstract]   [Full Text] [Related]  

  • 49. [On the theory of cocarboxylase action. II. Origin and fundamentals of a two-center mechanism of thiamine pyrophosphate action from research on models and enzymatic measuremets].
    Schellenberger A; Müller V; Winter K; Hübner G
    Hoppe Seylers Z Physiol Chem; 1966; 344(4):244-60. PubMed ID: 5989443
    [No Abstract]   [Full Text] [Related]  

  • 50. Mechanism of biotin action.
    Knappe J
    Annu Rev Biochem; 1970; 39():757-76. PubMed ID: 4920829
    [No Abstract]   [Full Text] [Related]  

  • 51. Biochemical mechanisms of biotin and thiamin action and relationships to genetic disease.
    Utter MF; Sheu KF
    Birth Defects Orig Artic Ser; 1980; 16(1):289-304. PubMed ID: 7448358
    [No Abstract]   [Full Text] [Related]  

  • 52. 2-Oxo-3-alkynoic acids, universal mechanism-based inactivators of thiamin diphosphate-dependent decarboxylases: synthesis and evidence for potent inactivation of the pyruvate dehydrogenase multienzyme complex.
    Brown A; Nemeria N; Yi J; Zhang D; Jordan WB; Machado RS; Guest JR; Jordan F
    Biochemistry; 1997 Jul; 36(26):8071-81. PubMed ID: 9201955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of diacetyl formation in yeast fermentation.
    Suomalainen H; Ronkainen P
    Nature; 1968 Nov; 220(5169):792-3. PubMed ID: 5698752
    [No Abstract]   [Full Text] [Related]  

  • 54. Pyruvate-ferredoxin oxidoreductase. IV. Studies on the reaction mechanism.
    Uyeda K; Rabinowitz JC
    J Biol Chem; 1971 May; 246(10):3120-5. PubMed ID: 4324891
    [No Abstract]   [Full Text] [Related]  

  • 55. Accelerating unimolecular decarboxylation by preassociated acid catalysis in thiamin-derived intermediates: implicating Brønsted acids as carbanion traps in enzymes.
    Kluger R; Ikeda G; Hu Q; Cao P; Drewry J
    J Am Chem Soc; 2006 Dec; 128(49):15856-64. PubMed ID: 17147398
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CC bond formation using ThDP-dependent lyases.
    Müller M; Sprenger GA; Pohl M
    Curr Opin Chem Biol; 2013 Apr; 17(2):261-70. PubMed ID: 23523314
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The oxidation of C14-pyruvate and of C14-ribose in thiamine deficient intact rats.
    Brin M
    Isr J Med Sci; 1967; 3(6):792-9. PubMed ID: 5587572
    [No Abstract]   [Full Text] [Related]  

  • 58. Oxaloacetate decarboxylase from cod. Catalysis of hydrogen-deuterium exchange in pyruvate.
    Kosicki GW
    Biochemistry; 1968 Dec; 7(12):4310-4. PubMed ID: 5700657
    [No Abstract]   [Full Text] [Related]  

  • 59. Domain relationships in thiamine diphosphate-dependent enzymes.
    Duggleby RG
    Acc Chem Res; 2006 Aug; 39(8):550-7. PubMed ID: 16906751
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The metabolism of nitrilotriacetate by a pseudomonad.
    Cripps RE; Noble AS
    Biochem J; 1973 Dec; 136(4):1059-68. PubMed ID: 4362331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.