These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4897390)

  • 1. Surface areas of the cerebral cortex of mammals determined by stereological methods.
    Elias H; Schwartz D
    Science; 1969 Oct; 166(3901):111-3. PubMed ID: 4897390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Surface area determination of the cerebral cortex of mammals with special reference to humans, Cetacea, elephants and Marsupialia].
    Elias H; Haug H; Lange W; Schlenska G; Schwartz D
    Verh Anat Ges; 1969; 63():461-2. PubMed ID: 5378534
    [No Abstract]   [Full Text] [Related]  

  • 3. Size and shape of the cerebral cortex in mammals. I. The cortical surface.
    Hofman MA
    Brain Behav Evol; 1985; 27(1):28-40. PubMed ID: 3836731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Gyrification in Carnivores.
    Lyras GA; Giannakopoulou A; Kouvari M; Papadopoulos GC
    Brain Behav Evol; 2016; 88(3-4):187-203. PubMed ID: 28068650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size and shape of the cerebral cortex in mammals. II. The cortical volume.
    Hofman MA
    Brain Behav Evol; 1988; 32(1):17-26. PubMed ID: 3056571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical complexity in cetacean brains.
    Hof PR; Chanis R; Marino L
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Nov; 287(1):1142-52. PubMed ID: 16200644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical cyto- and chemoarchitecture in three small Australian marsupial carnivores: Sminthopsis macroura, Antechinus stuartii and Phascogale calura.
    Ashwell KW; McAllan BM; Mai JK; Paxinos G
    Brain Behav Evol; 2008 Nov; 72(3):215-32. PubMed ID: 18946209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of cerebral surface area using vertical sectioning and magnetic resonance imaging: a stereological study.
    Acer N; Cankaya MN; Işçi O; Baş O; Camurdanoğlu M; Turgut M
    Brain Res; 2010 Jan; 1310():29-36. PubMed ID: 19914221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant).
    Haug H
    Am J Anat; 1987 Oct; 180(2):126-42. PubMed ID: 3673918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereological and allometric studies on mammalian cerebral cortex with implications for medical brain imaging.
    Mayhew TM; Mwamengele GL; Dantzer V
    J Anat; 1996 Aug; 189 ( Pt 1)(Pt 1):177-84. PubMed ID: 8771409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of neocortical gyrencephaly in African elephants (Loxodonta africana) and six species of cetaceans: comparison with other mammals.
    Manger PR; Prowse M; Haagensen M; Hemingway J
    J Comp Neurol; 2012 Aug; 520(11):2430-9. PubMed ID: 22237903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Principles of the structural organization of the cetacean neocortex].
    Zvorykin VP
    Arkh Anat Gistol Embriol; 1977 Dec; 73(12):5-22. PubMed ID: 341855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative MRI: a reliable protocol for measurement of cerebral gyrification using stereology.
    Ronan L; Doherty CP; Delanty N; Thornton J; Fitzsimons M
    Magn Reson Imaging; 2006 Apr; 24(3):265-72. PubMed ID: 16563955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative stereological study of the area of cortical surface in the monkey, pig and cat cerebrum.
    Li LY; Guo JH; Yang ZW
    Eur J Morphol; 2003; 41(3-4):127-9. PubMed ID: 16225263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Dolphins' Body and Brain Measurements with Four Other Groups of Cetaceans Reveals Great Diversity.
    Ridgway SH; Carlin KP; Van Alstyne KR; Hanson AC; Tarpley RJ
    Brain Behav Evol; 2016; 88(3-4):235-257. PubMed ID: 28122370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the development of the cerebral fissures in Cetacea.
    Hammelbo T
    Acta Anat (Basel); 1972; 82(4):606-18. PubMed ID: 5068741
    [No Abstract]   [Full Text] [Related]  

  • 17. The gyrification of mammalian cerebral cortex: quantitative evidence of anisomorphic surface expansion during phylogenetic and ontogenetic development.
    Mayhew TM; Mwamengele GL; Dantzer V; Williams S
    J Anat; 1996 Feb; 188 ( Pt 1)(Pt 1):53-8. PubMed ID: 8655415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neocortical projections of the suprageniculate and posterior thalamic nuclei in the marsupial brush-tailed possum, Trichosurus vulpecula (Phalangeridae), with a comparative commentary on the organization of the posterior thalamus in marsupial and placental mammals.
    Neylon L; Haight JR
    J Comp Neurol; 1983 Jul; 217(4):357-75. PubMed ID: 6886058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interglobular spaces in some mammalian teeth.
    Isokawa S; Nishihara T; Oyanagi T; Morimoto M; Yamaguchi S
    J Nihon Univ Sch Dent; 1969 Sep; 11(3):99-104. PubMed ID: 5260907
    [No Abstract]   [Full Text] [Related]  

  • 20. [Stereological investigation in the cerebral cortex of aging subjects (author's transl)].
    Hunziker O; Abdel'Al S; Schulz U; Meier-Ruge W
    Aktuelle Gerontol; 1978 Sep; 8(9):503-8. PubMed ID: 30330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.