These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 4897945)

  • 21. Azotobacter vinelandii ribonucleic acid polymerase. 3. Ribonucleic acid chain initiation.
    Krakow JS; Horsley WJ
    J Biol Chem; 1967 Oct; 242(20):4796-800. PubMed ID: 6061421
    [No Abstract]   [Full Text] [Related]  

  • 22. Calf thymus RNA polymerases exhibit template specificity.
    Gniazdowski M; Mandel JL; Gissinger F; Kedinger C; Chambon P
    Biochem Biophys Res Commun; 1970 Mar; 38(6):1033-40. PubMed ID: 4908542
    [No Abstract]   [Full Text] [Related]  

  • 23. Cross-linked DNA as template in the synthesis of RNA in vitro.
    Mamet-Bratley MD
    Biochim Biophys Acta; 1969 Dec; 195(2):422-33. PubMed ID: 4904391
    [No Abstract]   [Full Text] [Related]  

  • 24. Transcription of ribonucleic acid by the ribonucleic acid directed deoxyribonucleic acid polymerase of Rous sarcoma virus and deoxyribonucleic acid polymerase I of Escherichia coli.
    Taylor JM; Faras AJ; Varmus HE; Goodman HM; Levinson WE; Bishop JM
    Biochemistry; 1973 Jan; 12(3):460-7. PubMed ID: 4345804
    [No Abstract]   [Full Text] [Related]  

  • 25. The role of deoxyribonucleic acid in ribonucleic acid synthesis. XIV. A study of the initiation of ribonucleic acid synthesis.
    Maitra U; Nakata Y; Hurwitz J
    J Biol Chem; 1967 Nov; 242(21):4908-18. PubMed ID: 4862425
    [No Abstract]   [Full Text] [Related]  

  • 26. Influence of salts on RNA synthesis by DNA-dependent RNA-polymerase from Escherichia coli.
    Fuchse ; Millette RL; Zillig W; Walter G
    Eur J Biochem; 1967 Dec; 3(2):183-93. PubMed ID: 4865567
    [No Abstract]   [Full Text] [Related]  

  • 27. Micrococcus luteus deoxyribonucleic acid polymerase. Studies of the enzymic reaction and properties of the deoxyribonucleic acid product.
    Harwood SJ; Schendel PF; Wells RD
    J Biol Chem; 1970 Nov; 245(21):5614-24. PubMed ID: 4990612
    [No Abstract]   [Full Text] [Related]  

  • 28. Native and denatured DNA of phage T3 and of E. coli B as templates for RNA polymerase.
    Cheong LC; Chargaff E
    Nature; 1969 Mar; 221(5186):1144-6. PubMed ID: 4975275
    [No Abstract]   [Full Text] [Related]  

  • 29. Endonuclease I of Proteus mirabilis. Properties of the noncomplexed and transfer ribonucleic acid-complexed forms of the enzyme.
    Goebel W; Helinski DR
    J Biol Chem; 1971 Jun; 246(12):3857-62. PubMed ID: 4327190
    [No Abstract]   [Full Text] [Related]  

  • 30. Ribonucleic acid polymerase from Micrococcus lysodeikticus. II. Studies on double stranded homopolynucleotide templates.
    Straat PA; Ts'o PO; Bollum FJ
    J Biol Chem; 1969 Jan; 244(2):391-8. PubMed ID: 5773303
    [No Abstract]   [Full Text] [Related]  

  • 31. Deoxyribonucleic acid biosynthesis in mitochondria. Purification and general properties of rat liver mitochondrial deoxyribonucleic acid polymerase.
    Meyer RR; Simpson MV
    J Biol Chem; 1970 Jul; 245(13):3426-35. PubMed ID: 4918151
    [No Abstract]   [Full Text] [Related]  

  • 32. Enzymatic synthesis of deoxyribonucleic acid. XXXI. Binding of deoxyribonucleic acid to deoxyribonucleic acid polymerase.
    Englund PT; Kelly RB; Kornberg A
    J Biol Chem; 1969 Jun; 244(11):3045-52. PubMed ID: 4890764
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of spermidine on the enzymatic synthesis of polyadenylic acid directed by polyuridylic acid.
    Savino M; Ascoli F
    Biochim Biophys Acta; 1969 Dec; 195(2):569-72. PubMed ID: 5366936
    [No Abstract]   [Full Text] [Related]  

  • 34. Properties of the phage f2 replicase. I. Optimal conditions for replicase activity and analysis of the polynucleotide product synthesized in vitro.
    Fedoroff NV; Zinder ND
    J Biol Chem; 1972 Jul; 247(14):4577-85. PubMed ID: 4557846
    [No Abstract]   [Full Text] [Related]  

  • 35. Exhaustive hybridization and its application to an analysis of the ribonucleic acid synthesized in T4-infected cells.
    Landy A; Spiegelman S
    Biochemistry; 1968 Feb; 7(2):585-91. PubMed ID: 4868543
    [No Abstract]   [Full Text] [Related]  

  • 36. Enzymatic repair of DNA. 3. Properties of the UV-endonuclease and UV-exonuclease.
    Kaplan JC; Kushner SR; Grossman L
    Biochemistry; 1971 Aug; 10(18):3315-24. PubMed ID: 5000813
    [No Abstract]   [Full Text] [Related]  

  • 37. In vitro transcription of T3 DNA by Escherichia coli and T3 polymerases.
    Dunn JJ; McAllister WT; Bautz EK
    Virology; 1972 Apr; 48(1):112-25. PubMed ID: 4552786
    [No Abstract]   [Full Text] [Related]  

  • 38. RNA synthesis: divalent cation-related specificity in the initiation step.
    Wilson RG; Russo JF; Steck TL
    Biochim Biophys Acta; 1970 Apr; 204(2):412-5. PubMed ID: 5441187
    [No Abstract]   [Full Text] [Related]  

  • 39. Transcription of RNA polymerase binding sites isolated from T4 phage DNA.
    RĂ¼ger W
    Biochim Biophys Acta; 1971 May; 238(2):202-11. PubMed ID: 4936433
    [No Abstract]   [Full Text] [Related]  

  • 40. Ribonucleic acid polymerase from Micrococcus luteus. 3. The effect of substrate, metal ion, and temperature on the homopolymer-directed reaction.
    Straat PA; Ts'o PO
    J Biol Chem; 1969 Nov; 244(22):6263-9. PubMed ID: 5350960
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.