These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Leucocyte energy metabolism. VII. Respiratory chain enzymes, oxygen consumption and oxidative phosphorylation of mitochondria isolated from leucocytes. Nessi P; Billesbolle S; Fornerod M; Maillard M; Frei J Enzyme; 1977; 22(3):183-95. PubMed ID: 862602 [TBL] [Abstract][Full Text] [Related]
4. A proposed mechanism for fatty acid effects on energy metabolism of the heart. Shug AL; Shrago E J Lab Clin Med; 1973 Feb; 81(2):214-8. PubMed ID: 4734220 [No Abstract] [Full Text] [Related]
5. [Biochemistry of normal and leukemic leukocytes. X. Energy and carbohydrate metabolism of neutrophilic granulocytes]. Sznajd J; Malkiewicz-Wasowicz B; Naskalski J; Lisiewicz J Przegl Lek; 1972; 29(6):634-40. PubMed ID: 4561226 [No Abstract] [Full Text] [Related]
7. Control mechanisms of adenine nucleotide metabolism of ascites tumor cells. Yushok WD J Biol Chem; 1971 Mar; 246(6):1607-17. PubMed ID: 5102147 [No Abstract] [Full Text] [Related]
8. [Mechanisms of the regulation and adaptation of energy metabolism during aging]. Bogatskaia LN; Kul'chitskiĭ OK; Litoshenko AIa Vestn Akad Med Nauk SSSR; 1984; (3):30-6. PubMed ID: 6232770 [No Abstract] [Full Text] [Related]
10. Leukocyte energy metabolism. 3. Anaerobic and aerobic ATP production and related enzymes. Jemelin M; Frei J Enzymol Biol Clin (Basel); 1970; 11(4):298-323. PubMed ID: 5309719 [No Abstract] [Full Text] [Related]
11. [Mitochondria from brown fat: enzymes and respiratory chain phosphorylation during the pre- and postnatal development of the interscapular fat body of the guinea pig]. Rafael J; Klaas D; Hohorst HJ Hoppe Seylers Z Physiol Chem; 1968 Dec; 349(12):1711-24. PubMed ID: 5707038 [No Abstract] [Full Text] [Related]
12. [Energy metabolism of the leukocyte]. Jemelin M; Frei J Ann Biol Clin (Paris); 1971; 29(2):109-11. PubMed ID: 5558121 [No Abstract] [Full Text] [Related]
13. Ascorbic acid metabolism and glycolysis in the polymorphonuclear leucocyte of the guinea pig. Elliott CG; Smith MD J Cell Physiol; 1966 Feb; 67(1):169-75. PubMed ID: 5937010 [No Abstract] [Full Text] [Related]
14. [Production of ammonia and catabolism of purine nucleotides in the guinea pig leukocyte]. Antonioli JA; Vannotti A Med Pharmacol Exp Int J Exp Med; 1966; 14(5):417-26. PubMed ID: 4289470 [No Abstract] [Full Text] [Related]
15. [Oxygen consumption by brain tissue and free nucleotide content of the brain during liver function disorders in rats]. Kurskiĭ MD; Zriakov OM Ukr Biokhim Zh; 1966; 38(3):269-73. PubMed ID: 5999354 [No Abstract] [Full Text] [Related]
16. The response of the respiratory chain and adenine nucleotide system to oxidative phosphorylation in yeast mitochondria. Onishi T; Kröger A; Heldt HW; Pfaff E; Klingenberg M Eur J Biochem; 1967 May; 1(3):301-11. PubMed ID: 4293926 [No Abstract] [Full Text] [Related]
17. [Myocardial energy metabolism in acute ischemia and its pharmacologic correction]. Gatsura VV Usp Fiziol Nauk; 1981; 12(1):97-118. PubMed ID: 7013322 [No Abstract] [Full Text] [Related]
18. Adenosine monophosphate as the first phosphoryl acceptor in oxidative phosphorylation. Ozawa T Arch Biochem Biophys; 1966 Nov; 117(2):201-23. PubMed ID: 5972817 [No Abstract] [Full Text] [Related]
19. Preparation and some properties of amelanotic melanoma mitochondria. Hiraga M; Adachi K Cancer Res; 1970 May; 30(5):1453-8. PubMed ID: 5426948 [No Abstract] [Full Text] [Related]
20. The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. van Hellemond JJ; Opperdoes FR; Tielens AG Biochem Soc Trans; 2005 Nov; 33(Pt 5):967-71. PubMed ID: 16246022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]