These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 4899584)

  • 1. Specificity of aminoacyl transfer ribonucleic acid synthetases from Escherichia coli K12.
    Kondo M; Woese CR
    Biochemistry; 1969 Oct; 8(10):4177-82. PubMed ID: 4899584
    [No Abstract]   [Full Text] [Related]  

  • 2. A comparative study of the interactions of Escherichia coli leucyl-, seryl-, and valyl-transfer ribonucleic acid synthetases with their cognate transfer ribonucleic acids.
    Myers G; Blank HU; Söll D
    J Biol Chem; 1971 Aug; 246(16):4955-64. PubMed ID: 4936720
    [No Abstract]   [Full Text] [Related]  

  • 3. Rapid deacylation by isoleucyl transfer ribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine.
    Eldred EW; Schimmel PR
    J Biol Chem; 1972 May; 247(9):2961-4. PubMed ID: 4554364
    [No Abstract]   [Full Text] [Related]  

  • 4. Replacement of Mg 2+ by monovalent cations in aminoacyl transfer RNA formation.
    Igarashi K; Yo M; Takeda Y
    Biochim Biophys Acta; 1971 May; 238(2):314-23. PubMed ID: 4328114
    [No Abstract]   [Full Text] [Related]  

  • 5. The specificity of enzymic reactions. Aminoacyl-soluble RNA ligases.
    Loftfield RB; Eigner EA
    Biochim Biophys Acta; 1966 Dec; 130(2):426-48. PubMed ID: 4291467
    [No Abstract]   [Full Text] [Related]  

  • 6. Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli and tryptophanyladenosine triphosphate formation.
    Muench KH
    Biochemistry; 1969 Dec; 8(12):4872-9. PubMed ID: 4312458
    [No Abstract]   [Full Text] [Related]  

  • 7. Specificity of the valyl ribonucleic acid synthetase from Escherichia coli in the binding of valine analogues.
    Owens SL; Bell FE
    J Biol Chem; 1970 Nov; 245(21):5515-23. PubMed ID: 4319560
    [No Abstract]   [Full Text] [Related]  

  • 8. Requirement of different sulfhydryl groups in the activation and transfer reactions of isoleucyl transfer ribonucleic acid synthetase.
    Kuo T; DeLuca M
    Biochemistry; 1969 Dec; 8(12):4762-8. PubMed ID: 4312454
    [No Abstract]   [Full Text] [Related]  

  • 9. The divergence in reactivity of aminoacyl transfer ribonucleic acid synthetases of Escherichia coli with hydroxylamine.
    Hirsh DI; Lipmann F
    J Biol Chem; 1968 Nov; 243(21):5724-30. PubMed ID: 4301683
    [No Abstract]   [Full Text] [Related]  

  • 10. Aminoacyl transfer RNA formation. I. Absence of pyrophosphate-ATP exchange in aminoacyl-tRNA formation stimulated by polyamines.
    Igarashi K; Matsuzaki K; Takeda Y
    Biochim Biophys Acta; 1971 Nov; 254(1):91-103. PubMed ID: 4332417
    [No Abstract]   [Full Text] [Related]  

  • 11. THE SEPARATION AND PARTIAL PURIFICATION OF AMINOACYL-RNA SYNTHETASES FROM ESCHERICHIA COLI.
    MCCORQUODALE DJ
    Biochim Biophys Acta; 1964 Dec; 91():541-8. PubMed ID: 14262440
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of transfer ribonucleic acid on the rate law and mechanism of the adenosine triphosphate--pyrophosphate isotope exchange reaction of an aminoacyl transfer ribonucleic acid synthetase.
    McNeil MR; Schimmel PR
    Arch Biochem Biophys; 1972 Sep; 152(1):175-9. PubMed ID: 4342105
    [No Abstract]   [Full Text] [Related]  

  • 13. The presence of N-(purin-6-ylcarbamoyl)threonine in transfer ribonucleic acid species whose codons begin with adenine.
    Powers DM; Peterkofsky A
    J Biol Chem; 1972 Oct; 247(20):6394-401. PubMed ID: 4561935
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanism of action of amino acid transfer ribonucleic acid ligases.
    Loftfield RB; Eigner EA
    J Biol Chem; 1969 Apr; 244(7):1746-54. PubMed ID: 4305463
    [No Abstract]   [Full Text] [Related]  

  • 15. Transfer ribonucleic acid synthetase catalyzed deacylation of aminoacyl transfer ribonucleic acid in the absence of adenosine monophosphate and pyrophosphate.
    Schreier AA; Schimmel PR
    Biochemistry; 1972 Apr; 11(9):1582-9. PubMed ID: 4337554
    [No Abstract]   [Full Text] [Related]  

  • 16. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl transfer ribonucleic acid synthetases.
    Roy KL; Söll D
    J Biol Chem; 1970 Mar; 245(6):1394-400. PubMed ID: 4910052
    [No Abstract]   [Full Text] [Related]  

  • 17. Recovery of transfer RNA functions by combining fragmented Escherichia coli formylmethionine transfer RNA.
    Seno T; Kobayashi M; Nishimura S
    Biochim Biophys Acta; 1969 Oct; 190(2):285-303. PubMed ID: 4900575
    [No Abstract]   [Full Text] [Related]  

  • 18. The characterization of the RNAs and aminoacyl-tRNA synthetases of the blue-green alga, Anacystis nidulans.
    Beauchemin N; Larue B; Cedergren RJ
    Arch Biochem Biophys; 1973 May; 156(1):17-25. PubMed ID: 4199781
    [No Abstract]   [Full Text] [Related]  

  • 19. Investigation of the transfer of amino acid from a transfer ribonucleic acid synthetase-aminoacyl adenylate complex to transfer ribonucleic acid.
    Eldred EW; Schimmel PR
    Biochemistry; 1972 Jan; 11(1):17-23. PubMed ID: 4550554
    [No Abstract]   [Full Text] [Related]  

  • 20. Aminoacyl transfer RNA formation. II. Comparison of the mechanisms of aminoacylations stimulated by polyamines and Mg 2+ .
    Igarashi K; Matsuzaki K; Takeda Y
    Biochim Biophys Acta; 1972 Apr; 262(4):476-87. PubMed ID: 4336270
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.