These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 4899929)

  • 1. On the role of S-adenoxylmethionine in the vitamin B12 dependent methionine biosynthesis.
    Rüdiger H; Jaenicke L
    Eur J Biochem; 1969 Oct; 10(3):557-60. PubMed ID: 4899929
    [No Abstract]   [Full Text] [Related]  

  • 2. Escherichia coli B 5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: catalysis by a reconstituted methyl-14C-cobalamin holoenzyme and the function of S-adenosyl-l-methionine.
    Taylor RT; Hanna ML
    Arch Biochem Biophys; 1970 Apr; 137(2):453-9. PubMed ID: 4909167
    [No Abstract]   [Full Text] [Related]  

  • 3. Escherichia coli B cobalamin methyltransferase: ability of diaphorases and lipoamide dehydrogenases to function as reducing agents.
    Taylor RT; Hanna ML
    Arch Biochem Biophys; 1970 Jul; 139(1):149-63. PubMed ID: 4319457
    [No Abstract]   [Full Text] [Related]  

  • 4. Methionine biosynthesis in Ochromonas malhamensis.
    Griffiths JM; Daniel LJ
    Arch Biochem Biophys; 1969 Nov; 134(2):463-72. PubMed ID: 4311184
    [No Abstract]   [Full Text] [Related]  

  • 5. Escherichia coli B 5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: resolution and reconstitution of holoenzyme.
    Taylor RT
    Arch Biochem Biophys; 1970 Apr; 137(2):529-46. PubMed ID: 4909170
    [No Abstract]   [Full Text] [Related]  

  • 6. The vitamin B12-dependent methionine synthetase. The cycle of transmethylation.
    Rüdiger H
    Eur J Biochem; 1971 Jul; 21(2):264-8. PubMed ID: 4935202
    [No Abstract]   [Full Text] [Related]  

  • 7. Escherichia coli B N5-methyltetrahydrofolate-homocysteine methyltransferase: sequential formation of bound methylcobalamin with S-adenosyl-L-methionine and N5-methyltetrahydrofolate.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1969 Feb; 129(2):728-44. PubMed ID: 4886251
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the regulation of one-carbon metabolism. II. Repression-derepression of serine hydroxymethyltransferase by methionine in Escherichia coli 113-3.
    Mansouri A; Decter JB; Silber R
    J Biol Chem; 1972 Jan; 247(2):348-52. PubMed ID: 4550600
    [No Abstract]   [Full Text] [Related]  

  • 9. Escherichia coli B N5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: activation with S-adenosyl-L-methionine and the mechanism for methyl group transfer.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1969 Feb; 129(2):745-66. PubMed ID: 4886252
    [No Abstract]   [Full Text] [Related]  

  • 10. THE ROLE OF VITAMIN B12 IN METHYL TRANSFER TO HOMOCYSTEINE.
    BUCHANAN JM; ELFORD HL; LOUGHLIN RE; MCDOUGALL BM; ROSENTHAL S
    Ann N Y Acad Sci; 1964 Apr; 112():756-73. PubMed ID: 14167310
    [No Abstract]   [Full Text] [Related]  

  • 11. Resolution of the methionine synthetase system from Escherichia coli K-12.
    Galivan J; Huennekens FM
    Biochem Biophys Res Commun; 1970 Jan; 38(1):46-51. PubMed ID: 4313925
    [No Abstract]   [Full Text] [Related]  

  • 12. Spectrophotometric evidence for the formation of an Escherichia coli B B-12s methyltransferase.
    Taylor RT; Hanna ML
    Biochem Biophys Res Commun; 1970 Feb; 38(4):758-64. PubMed ID: 4910248
    [No Abstract]   [Full Text] [Related]  

  • 13. Roles of vitamin B 12 and folic acid in methionine synthesis.
    Weissbach H; Taylor RT
    Vitam Horm; 1970; 28():415-40. PubMed ID: 4947477
    [No Abstract]   [Full Text] [Related]  

  • 14. Methylcobalamin as an intermediate in mammalian methionine biosynthesis.
    Burke GT; Mangum JH; Brodie JD
    Biochemistry; 1970 Oct; 9(22):4297-302. PubMed ID: 5472706
    [No Abstract]   [Full Text] [Related]  

  • 15. N5-methyltetrahydrofolate-homocysteine transmethylase. Role of S-adenosylmethionine in vitamin B12-dependent methionine synthesis.
    Taylor RT; Weissbach H
    J Biol Chem; 1967 Apr; 242(7):1517-21. PubMed ID: 5337044
    [No Abstract]   [Full Text] [Related]  

  • 16. Formation of methionine methyl groups.
    Jaenicke L; Rüdiger H
    Fed Proc; 1971; 30(1):160-6. PubMed ID: 4321981
    [No Abstract]   [Full Text] [Related]  

  • 17. Enzymic synthesis of methionine: formation of a radioactive cobamide enzyme with N5-methyl-14C-tetrahydrofolate.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1967 Mar; 119(1):572-9. PubMed ID: 4861150
    [No Abstract]   [Full Text] [Related]  

  • 18. Activation of methionine synthetase by a reduced triphosphopyridine nucleotide-dependent flavoprotein system.
    Fujii K; Huennekens FM
    J Biol Chem; 1974 Nov; 249(21):6745-53. PubMed ID: 4154078
    [No Abstract]   [Full Text] [Related]  

  • 19. Formation of the N5-methyltetrahydrofolate-homocysteine methyltransferase holoenzyme from apoenzyme and adenosyl-B 12.
    Rosales F; Ritari SJ; Sakami W
    Biochem Biophys Res Commun; 1970 Jul; 40(2):271-6. PubMed ID: 4319824
    [No Abstract]   [Full Text] [Related]  

  • 20. Interrelationship of adenosyl methionine and methyl-B12 in the biosynthesis of methionine.
    Kerwar SS; Mangum JH; Scrimgeour KG; Brodie JD; Huennekens FM
    Arch Biochem Biophys; 1966 Sep; 116(1):305-18. PubMed ID: 5336024
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.