BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 4900985)

  • 1. On the mechanism of the Zn2+ and Co2+-alkaline phosphatase of E. coli. Number of sites and anticooperativity.
    Lazdunski C; Petitclerc C; Chappelet D; Lazdunski M
    Biochem Biophys Res Commun; 1969 Nov; 37(5):744-9. PubMed ID: 4900985
    [No Abstract]   [Full Text] [Related]  

  • 2. Zn2+ and Co2+-alkaline phosphatases of E. coli. A comparative kinetic study.
    Lazdunski C; Lazdunski M
    Eur J Biochem; 1969 Jan; 7(2):294-300. PubMed ID: 4885467
    [No Abstract]   [Full Text] [Related]  

  • 3. The functional properties of the Zn2(plus)-and Co2(plus)-alkaline phosphatases of Escherichia coli. Labelling of the active site with pyrophosphate, complex formation with arsenate, and reinvestigation of the role of the zinc atoms.
    Petitclerc C; Lazdunski C; Chappelet D; Moulin A; Lazdunski M
    Eur J Biochem; 1970 Jun; 14(2):301-8. PubMed ID: 4319099
    [No Abstract]   [Full Text] [Related]  

  • 4. Flip-flop mechanisms in enzymology. A model: the alkaline phosphatase of Escherichia coli.
    Lazdunski M; Petitclerc C; Chappelet D; Lazdunski C
    Eur J Biochem; 1971 May; 20(1):124-39. PubMed ID: 4325354
    [No Abstract]   [Full Text] [Related]  

  • 5. Phosphate binding to alkaline phosphatase. Metal ion dependence.
    Applebury ML; Johnson BP; Coleman JE
    J Biol Chem; 1970 Oct; 245(19):4968-76. PubMed ID: 4319108
    [No Abstract]   [Full Text] [Related]  

  • 6. The Mn2plus-alkaline phosphatase of E. coli.
    Chappelet D; Lazdunski C; Petitclerc C; Lazdunski M
    Biochem Biophys Res Commun; 1970 Jul; 40(1):91-6. PubMed ID: 4318588
    [No Abstract]   [Full Text] [Related]  

  • 7. Negative cooperativity and half of the sites reactivity. Alkaline phosphatases of Escherichia coli with Zn2+, Co2+, Cd2+, Mn2+, and Cu2+ in the active sites.
    Chappelet-Tordo D; Iwatsubo M; Lazdunski M
    Biochemistry; 1974 Aug; 13(18):3754-62. PubMed ID: 4604809
    [No Abstract]   [Full Text] [Related]  

  • 8. Allosteric interactions between metal ion and phosphate at the active sites of alkaline phosphatase as determined by 31P NMR and 113Cd NMR.
    Chlebowski JF; Armitage IM; Coleman JE
    J Biol Chem; 1977 Oct; 252(20):7053-61. PubMed ID: 20443
    [No Abstract]   [Full Text] [Related]  

  • 9. 31 P NMR studies on phosphate binding to the Zn 2+ , Co 2+ and Mn 2+ forms of escherichia coli alkaline phosphatase.
    Csopak H; Drakenberg T
    FEBS Lett; 1973 Mar; 30(3):296-300. PubMed ID: 4573438
    [No Abstract]   [Full Text] [Related]  

  • 10. Hydrogen-tritium exchange of partially and fully reconstituted zinc and cobalt alkaline phosphatase of Escherichia coli.
    Brown EM; Ulmer DD; Vallee BL
    Biochemistry; 1974 Dec; 13(26):5328-34. PubMed ID: 4611482
    [No Abstract]   [Full Text] [Related]  

  • 11. Formation and properties of a tetrameric form of Escherichia coli alkaline phosphatase.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1969 Nov; 8(11):4278-82. PubMed ID: 4900990
    [No Abstract]   [Full Text] [Related]  

  • 12. Alterations in the structure and function of Escherichia coli alkaline phosphatase due to Zn2+ binding.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1969 Feb; 8(2):588-93. PubMed ID: 4893577
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetic studies on DNA polymerase.
    Beyersmann D; Schramm G
    Biochim Biophys Acta; 1968 Apr; 159(1):64-74. PubMed ID: 4297073
    [No Abstract]   [Full Text] [Related]  

  • 14. Two differentiable classes of metal atoms in alkaline phosphatase of Escherichia coli.
    Simpson RT; Vallee BL
    Biochemistry; 1968 Dec; 7(12):4343-50. PubMed ID: 4882708
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetic properties of cobalt alkaline phosphatase.
    Gottesman M; Simpson RT; Vallee BL
    Biochemistry; 1969 Sep; 8(9):3776-83. PubMed ID: 4897950
    [No Abstract]   [Full Text] [Related]  

  • 16. The 5'-nucleotidase of Escherichia coli. II. Surface localization and purification of the Escherichia coli 5'-nucleotidase inhibitor.
    Neu HC
    J Biol Chem; 1967 Sep; 242(17):3905-11. PubMed ID: 5341266
    [No Abstract]   [Full Text] [Related]  

  • 17. Zinc and cobalt alkaline phosphatases.
    Simpson RT; Vallee BL
    Ann N Y Acad Sci; 1969 Oct; 166(2):670-95. PubMed ID: 4907876
    [No Abstract]   [Full Text] [Related]  

  • 18. The specific binding of zinc(II) to alkaline phosphatase of Escherichia coli.
    Csopak H
    Eur J Biochem; 1969 Jan; 7(2):186-92. PubMed ID: 4885464
    [No Abstract]   [Full Text] [Related]  

  • 19. Negative homotropic interactions in binding of substrate to alkaline phosphatase of Escherichia coli.
    Simpson RT; Valee BL
    Biochemistry; 1970 Feb; 9(4):953-8. PubMed ID: 4906908
    [No Abstract]   [Full Text] [Related]  

  • 20. The mechanistic significance of phosphate labeling of alkaline phosphatase.
    Reid TW; Pavlic M; Sullivan DJ; Wilson IB
    Biochemistry; 1969 Aug; 8(8):3184-8. PubMed ID: 4897329
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.