These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 490164)

  • 1. Uptake of manganese by chromaffin granules in vitro.
    Daniels AJ; Johnson LN; Williams RJ
    J Neurochem; 1979 Oct; 33(4):923-9. PubMed ID: 490164
    [No Abstract]   [Full Text] [Related]  

  • 2. Reserpine as a competitive and reversible inhibitor of the catecholamine transporter of bovine chromaffin granules.
    Kanner BI; Fishkes H; Maron R; Sharon I; Schuldiner S
    FEBS Lett; 1979 Apr; 100(1):175-8. PubMed ID: 437101
    [No Abstract]   [Full Text] [Related]  

  • 3. Catecholamine transport by isolated chromaffin granules. Influence of MgATP and a disulfonic stilbene on (R)-norepinephrine/epinephrine exchange and spontaneous epinephrine efflux.
    Ramu A; Pazoles CJ; Creutz CE; Pollard HB
    J Biol Chem; 1981 Feb; 256(3):1229-34. PubMed ID: 7451502
    [No Abstract]   [Full Text] [Related]  

  • 4. Uptake of nucleotides and catecholamines by chromaffin granules from pig and horse adrenal medulla.
    Carmichael SW; Weber A; Winkler H
    J Neurochem; 1980 Jul; 35(1):270-2. PubMed ID: 7452257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Net uptake of catecholamines into isolated chromaffin granules demonstrated by a novel polarographic technique.
    Johnson RG; Hayflick S; Carty SE; Scarpa A
    FEBS Lett; 1982 May; 141(1):63-7. PubMed ID: 7084478
    [No Abstract]   [Full Text] [Related]  

  • 6. Uptake of magnesium by chromaffin granules in vitro: role of the proton electrochemical gradient.
    Fiedler J; Daniels AJ
    J Neurochem; 1984 May; 42(5):1291-7. PubMed ID: 6707633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H+-ATPase and catecholamine transport in chromaffin granules.
    Beers MF; Carty SE; Johnson RG; Scarpa A
    Ann N Y Acad Sci; 1982; 402():116-33. PubMed ID: 6220634
    [No Abstract]   [Full Text] [Related]  

  • 8. Evidence that the H+ electrochemical gradient across membranes of chromaffin granules is not involved in exocytosis.
    Holz RW; Senter RA; Sharp RR
    J Biol Chem; 1983 Jun; 258(12):7506-13. PubMed ID: 6863252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catecholamine uptake and release in isolated chromaffin granules exposed to halothane.
    Sumikawa K; Amakata Y; Yoshikawa K; Kashimoto T; Izumi F
    Anesthesiology; 1980 Nov; 53(5):385-9. PubMed ID: 7425376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-dependent in vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules as a model for exocytosis.
    Konings F; De Potter W
    FEBS Lett; 1981 Apr; 126(1):103-6. PubMed ID: 6786919
    [No Abstract]   [Full Text] [Related]  

  • 11. On the role of ATP and divalent metal ions in the storage of catecholamines. H NMR studies of bovine adrenal chromaffin granules.
    Granot J; Rosenheck K
    FEBS Lett; 1978 Nov; 95(1):45-8. PubMed ID: 720605
    [No Abstract]   [Full Text] [Related]  

  • 12. Chromaffin granule membrane-F-actin interactions are calcium sensitive.
    Fowler VM; Pollard HB
    Nature; 1982 Jan; 295(5847):336-9. PubMed ID: 7057898
    [No Abstract]   [Full Text] [Related]  

  • 13. The biogenesis of adrenal chromaffin granules.
    Winkler H
    Neuroscience; 1977; 2(5):657-83. PubMed ID: 593550
    [No Abstract]   [Full Text] [Related]  

  • 14. Ionophore mediated catecholamine release from chromaffin granules. Comparison of X-537 A and X-14547 A effects.
    Scherman D; Roisin MP; Henry JP; Jeminet G
    Biochem Pharmacol; 1981 Dec; 30(24):3277-83. PubMed ID: 7326036
    [No Abstract]   [Full Text] [Related]  

  • 15. Active and passive transport of dopamine in chromaffin granule ghosts isolated from bovine adrenal medulla.
    Ingebretsen OC; Flatmark T
    J Biol Chem; 1979 May; 254(10):3833-9. PubMed ID: 438162
    [No Abstract]   [Full Text] [Related]  

  • 16. In vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules: specific control by Ca2+.
    Konings F; De Potter W
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Aug; 317(1):97-9. PubMed ID: 7279014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese as agonist and antagonist of calcium ions: dual effect upon catecholamine release from adrenal medulla.
    Arqueros L; Daniels AJ
    Life Sci; 1981 Mar; 28(13):1535-40. PubMed ID: 7242246
    [No Abstract]   [Full Text] [Related]  

  • 18. Subcellular distribution of ascorbate in bovine adrenal medulla. Evidence for accumulation in chromaffin granules against a concentration gradient.
    Ingebretsen OC; Terland O; Flatmark T
    Biochim Biophys Acta; 1980 Mar; 628(2):182-9. PubMed ID: 7357036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity and properties of the nucleotide carrier in chromaffin granules from bovine adrenal medulla.
    Weber A; Westhead EW; Winkler H
    Biochem J; 1983 Mar; 210(3):789-94. PubMed ID: 6307271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flux of catecholamines through chromaffin vesicles in cultured bovine adrenal medullary cells.
    Corcoran JJ; Wilson SP; Kirshner N
    J Biol Chem; 1984 May; 259(10):6208-14. PubMed ID: 6725249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.