These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 4902680)

  • 1. Codon recognition by enzymatically mischarged valine transfer ribonucleic acid.
    Grunberger D; Weinstein IB; Jacobson KB
    Science; 1969 Dec; 166(3913):1635-7. PubMed ID: 4902680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of phenylalanyl transfer ribonucleic acid synthetase of Neurospora crassa with valyl transfer ribonucleic acid of Escherichia coli.
    Ritter PO; Jacobson KB
    J Biol Chem; 1972 Dec; 247(23):7603-8. PubMed ID: 4264131
    [No Abstract]   [Full Text] [Related]  

  • 3. Aminoacylation of Escherichia coli valine transfer ribonucleic acid by Neurospora crassa phenylalanyl transfer ribonucleic acid synthetase in tris(hydroxymethyl)aminomethane hydrochloric acid and potassium cacodylate buffers. Effect of salts, dimethyl sulfoxide, ethanol, and 2-mercaptoethanol.
    Ritter PO; Kull FJ; Jacobson KB
    J Biol Chem; 1970 Apr; 245(8):2114-20. PubMed ID: 4909562
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of Tris and dimethylsulfoxide on the aminoacylation of Escherichia coli valine transfer RNA by Neurospora crassa phenylalanyl transfer RNA synthetase.
    Ritter PO; Kull FJ; Jacobson KB
    Biochim Biophys Acta; 1969 Apr; 179(2):524-6. PubMed ID: 4890606
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of inorganic pyrophosphate on Neurospora crassa phenylalanine transfer ribonucleic acid ligase in heterologous aminoacylation reactions.
    Kull FJ; Ritter PO; Jacobson KB
    Biochemistry; 1969 Jul; 8(7):3015-23. PubMed ID: 4309130
    [No Abstract]   [Full Text] [Related]  

  • 6. Ribonucleic acid codons and protein synthesis. 13. RNA codon recognition by deacylated tRNA and aminoacyl-tRNA.
    Levin JG; Nirenberg M
    J Mol Biol; 1968 Jun; 34(3):467-80. PubMed ID: 4938554
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on the aminoacylation of valine- and alanine-specific transfer RNA of Escherichia coli by aminoacyl transfer RNA synthetases from Neurospora crassa and E. coli.
    Holten VZ; Jacobson KB
    Arch Biochem Biophys; 1969 Jan; 129(1):283-9. PubMed ID: 4883911
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of amino acid structure, ionic strength, and magnesium ion concentration on rates of nonenzymic hydrolysis of aminoacyl transfer ribonucleic acid.
    Strickland JE; Jacobson KB
    Biochemistry; 1972 Jun; 11(12):2321-3. PubMed ID: 4260429
    [No Abstract]   [Full Text] [Related]  

  • 9. Multiple phenylalanyl-transfer ribonucleic acid synthetase activities in the cytoplasm of Neurospora crassa.
    Kull FJ; Jacobson KB
    Proc Natl Acad Sci U S A; 1969 Apr; 62(4):1137-44. PubMed ID: 5256412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous charging of Neurospora crassa phenylalanine tRNA by Escherichia coli valyl-tRNA synthetase.
    Strickland JE; Jacobson KB
    Biochim Biophys Acta; 1972 May; 269(2):247-51. PubMed ID: 4337752
    [No Abstract]   [Full Text] [Related]  

  • 11. RNA codons and protein synthesis. IX. Synonym codon recognition by multiple species of valine-, alanine-, and methionine-sRNA.
    Kellogg DA; Doctor BP; Loebel JE; Nirenberg MW
    Proc Natl Acad Sci U S A; 1966 Apr; 55(4):912-9. PubMed ID: 5327071
    [No Abstract]   [Full Text] [Related]  

  • 12. Neurospora arginyl transfer ribonucleic acid ligase. Binding and dissociation of transfer ribonucleic acid.
    Evans JA; Nazario M
    Biochemistry; 1974 Jul; 13(15):3092-8. PubMed ID: 4366469
    [No Abstract]   [Full Text] [Related]  

  • 13. Role of valine transfer RNA in control of RNA synthesis in Escherichia coli.
    Williams LS; Freundlich M
    Biochim Biophys Acta; 1969 Apr; 179(2):515-7. PubMed ID: 4890604
    [No Abstract]   [Full Text] [Related]  

  • 14. Coding properties of methyl-deficient phenylalanyl transfer ribonucleic acid from Escherichia coli.
    Stern R; Gonano F; Fleissner E; Littauer UZ
    Biochemistry; 1970 Jan; 9(1):10-8. PubMed ID: 4903881
    [No Abstract]   [Full Text] [Related]  

  • 15. Fractionation of rat liver transfer ribonucleic acid. Isolation of tyrosine, valine, serine, and phenylalanine transfer ribonucleic acids and their coding properties.
    Nishimura S; Weinstein IB
    Biochemistry; 1969 Mar; 8(3):832-42. PubMed ID: 5781021
    [No Abstract]   [Full Text] [Related]  

  • 16. Borohydride reduction of phenylalanine transfer ribonucleic acid. Effect on enzyme recognition.
    Shugart L; Stulberg MP
    J Biol Chem; 1969 May; 244(10):2806-8. PubMed ID: 4890232
    [No Abstract]   [Full Text] [Related]  

  • 17. Accumulation of inhibitors of protein synthesis after valine starvation. II. Effect on polyphenylalanine synthesis and the binding of phenylalanyl transfer RNA.
    Daneo-Moore L; Shockman GD
    Biochim Biophys Acta; 1969 Nov; 195(1):145-55. PubMed ID: 4982421
    [No Abstract]   [Full Text] [Related]  

  • 18. Relative efficiency of anticodons in reading the valine codons during protein synthesis in vitro.
    Mitra SK; Lustig F; Akesson B; Axberg T; Elias P; Lagerkvist U
    J Biol Chem; 1979 Jul; 254(14):6397-401. PubMed ID: 376532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of N-acetylphenylalanyl transfer ribonucleic acid binding to 30S ribosomal subunit of Escherichia coli by N-formylmethionyl transfer ribonucleic acid.
    Blumberg BM; Bernal SD; Nakamoto T
    Biochemistry; 1974 Jul; 13(16):3307-11. PubMed ID: 4601432
    [No Abstract]   [Full Text] [Related]  

  • 20. Kethoxal inactivation of three transfer ribonucleic acids chargeable by yeast phenylalanyl transfer ribonucleic acid synthetase.
    Litt M; Greenspan CM
    Biochemistry; 1972 Apr; 11(8):1437-42. PubMed ID: 4553754
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.