These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 4902680)

  • 21. Codon-acticodon recognition in the valine codon family.
    Mitra SK; Lustig F; Akesson B; Lagerkvist U
    J Biol Chem; 1977 Jan; 252(2):471-8. PubMed ID: 319094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneity of transfer ribonucleic acids from yellow lupin seeds.
    Legocki AB; Szymkowiak A; Hierowski M; Pawelkiewicz J
    Acta Biochim Pol; 1968; 15(2):197-203. PubMed ID: 4872630
    [No Abstract]   [Full Text] [Related]  

  • 23. Role of 16S ribosomal ribonucleic acid and the 30S ribosomal protein S12 in the initiation of natural messenger ribonucleic acid translation.
    Held WA; Gette WR; Nomura M
    Biochemistry; 1974 May; 13(10):2115-22. PubMed ID: 4597072
    [No Abstract]   [Full Text] [Related]  

  • 24. Studies on the formation of transfer ribonucleic acid-ribosome complexes. IV. A new assay for codon recognition and interaction of transfer ribonucleic acid with 50 S subunits.
    Pestka S
    J Biol Chem; 1968 Aug; 243(15):4038-44. PubMed ID: 4875320
    [No Abstract]   [Full Text] [Related]  

  • 25. Properties of ribosomal binding sites for phenylalanyl-transfer ribonucleic acid.
    Seeds NW; Retsema JA; Conway TW
    J Mol Biol; 1967 Aug; 27(3):421-30. PubMed ID: 4860578
    [No Abstract]   [Full Text] [Related]  

  • 26. Existence of two phenylalanyl-sRNA synthetases in Neurospora crassa.
    Imamoto F; Yamane T; Sueoka N
    Proc Natl Acad Sci U S A; 1965 Jun; 53(6):1456-62. PubMed ID: 4955766
    [No Abstract]   [Full Text] [Related]  

  • 27. On the nature of the yeast phenylalanine tran- sfer ribonucleic acid synthetase recognition site.
    Dudock BS; DiPeri C; Michael MS
    J Biol Chem; 1970 May; 245(9):2465-8. PubMed ID: 4909891
    [No Abstract]   [Full Text] [Related]  

  • 28. Two additional reversed-phase chromatographic systems for the separation of transfer ribonucleic acids and their application to the preparation of two formylmethionine and a valine transfer ribonucleic acid from Escherichia coli B.
    Weiss JF; Pearson RL; Kelmers AD
    Biochemistry; 1968 Oct; 7(10):3479-87. PubMed ID: 4878698
    [No Abstract]   [Full Text] [Related]  

  • 29. SOME NUCLEOTIDE SEQUENCES FROM PARTIALLY PURIFIED TRANSFER RIBONUCLEIC ACIDS.
    BERGQUIST PL; SCOTT JF
    Biochim Biophys Acta; 1964 Jun; 87():199-211. PubMed ID: 14192361
    [No Abstract]   [Full Text] [Related]  

  • 30. The role of the fourth nucleotide from the 3'end in the yeast phenylalanyl transfer RNA synthetase recognition site: requirement for adenosine.
    Roe B; Dudock B
    Biochem Biophys Res Commun; 1972 Oct; 49(2):399-406. PubMed ID: 4565493
    [No Abstract]   [Full Text] [Related]  

  • 31. Modification of ribonucleic acid by chemical carcinogens. VI. Effect of N-2-acetylaminofluorene modification of guanosine on the codon function of adjacent nucleosides in oligonucleotides.
    Grunberger D; Blobstein SH; Weinstein IB
    J Mol Biol; 1974 Feb; 82(4):459-68. PubMed ID: 4594146
    [No Abstract]   [Full Text] [Related]  

  • 32. Conformational changes of transfer ribonucleic acid. Equilibrium phase diagrams.
    Cole PE; Yang SK; Crothers DM
    Biochemistry; 1972 Nov; 11(23):4358-68. PubMed ID: 4562590
    [No Abstract]   [Full Text] [Related]  

  • 33. The effect of tRNA concentration on the rate of protein synthesis.
    Anderson WF
    Proc Natl Acad Sci U S A; 1969 Feb; 62(2):566-73. PubMed ID: 4894331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specificity of aminoacyl transfer ribonucleic acid synthetases from Escherichia coli K12.
    Kondo M; Woese CR
    Biochemistry; 1969 Oct; 8(10):4177-82. PubMed ID: 4899584
    [No Abstract]   [Full Text] [Related]  

  • 35. Mechanisms in protein synthesis. XIV. Competitive inhibition of natural mRNA-stimulated amino acid incorporation by aminoacyl-tRNA.
    Scheulen M; Schmidt B; Matthaei H
    Biochim Biophys Acta; 1973 Mar; 299(3):468-71. PubMed ID: 4573080
    [No Abstract]   [Full Text] [Related]  

  • 36. Solvent and specificity. Binding and isoleucylation of phenylalanine transfer ribonucleic acid (Escherichia coli) by isoleucyl transfer ribonucleic acid synthetase from Escherichia coli.
    Yarus M
    Biochemistry; 1972 Jun; 11(12):2352-61. PubMed ID: 4337616
    [No Abstract]   [Full Text] [Related]  

  • 37. ON THE AMINOACYL-RNA SYNTHETASE RECOGNITION SITES OF YEAST AND E. COLI TRANSFER RNA.
    YU CT; ZAMECNIK PC
    Biochem Biophys Res Commun; 1963 Aug; 12():457-63. PubMed ID: 14068484
    [No Abstract]   [Full Text] [Related]  

  • 38. Multiple aminoacyl-RNA synthetase systems and the genetic code in neurospora.
    Barnett WE; Epler JL
    Cold Spring Harb Symp Quant Biol; 1966; 31():549-55. PubMed ID: 4866402
    [No Abstract]   [Full Text] [Related]  

  • 39. Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs.
    Heckman JE; Sarnoff J; Alzner-DeWeerd B; Yin S; RajBhandary UL
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3159-63. PubMed ID: 6447871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coding properties of Neurospora mitochondrial and cytoplasmic leucine transfer RNA's.
    Epler JL; Barnett WE
    Biochem Biophys Res Commun; 1967 Aug; 28(3):328-33. PubMed ID: 4861583
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.