BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 4902813)

  • 1. Sulfur-deficient transfer ribonucleic acid in a cysteine-requiring, "relaxed" mutant of Escherichia coli.
    Harris CL; Titchener EB; Cline AL
    J Bacteriol; 1969 Dec; 100(3):1322-7. PubMed ID: 4902813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of mutants of Escherichia coli temperature-sensitive for ribonucleic acid regulation: an unusual phenotype associated with a phenylalanyl transfer ribonucleic acid synthetase mutant.
    Atherly AG; Suchanek MC
    J Bacteriol; 1971 Nov; 108(2):627-38. PubMed ID: 4942755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of chromatographically unique species of transfer ribonucleic acid during amino acid starvation of relaxed-control Escherichia coli.
    Fournier MJ; Peterkofsky A
    J Bacteriol; 1975 May; 122(2):538-48. PubMed ID: 1092655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation into polypeptide and charging on transfer ribonucleic acid of the amino acid analog 5',5',5'-trifluoroleucine by leucine auxotrophs of Escherichia coli.
    Fenster ED; Anker HS
    Biochemistry; 1969 Jan; 8(1):269-74. PubMed ID: 4887855
    [No Abstract]   [Full Text] [Related]  

  • 5. Biochemical bases for the antimetabolite action of L-serine hydroxamate.
    Tosa T; Pizer LI
    J Bacteriol; 1971 Jun; 106(3):972-82. PubMed ID: 4934072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acids in relaxed and stringent amino acid auxotrophs of Escherichia coli.
    Gray WJ; Midgley JE
    Biochem J; 1972 Aug; 128(5):1007-20. PubMed ID: 4566191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of ribonucleic acid synthesis by chloramphenicol in a rel + aminoacyl-transfer ribonucleic acid synthetase mutant of Escherichia coli.
    Yegian CD; Vanderslice RW
    J Bacteriol; 1971 Nov; 108(2):849-53. PubMed ID: 4942766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of ribonucleic acid synthesis in bacteria. Polymerization rates for ribonucleic acids in amino acid-starved relaxed and stringent auxotrophs of Escherichia coli.
    Gray WJ; Vickers TG; Midgley JE
    Biochem J; 1972 Aug; 128(5):1021-31. PubMed ID: 4566192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between the rate of ribonucleic acid synthesis and the level of valyl transfer ribonucleic acid in mutants of Escherichia coli.
    Kaplan S
    J Bacteriol; 1969 May; 98(2):579-86. PubMed ID: 4891259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-sensitive mutation in regulation of ribonucleic acid synthesis in Escherichia coli.
    Kuwano M; Endo H; Yamamoto M
    J Bacteriol; 1972 Dec; 112(3):1150-6. PubMed ID: 4565532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased isoleucine acceptance by sulfur-deficient transfer RNA from Escherichia coli.
    Harris CL; Marashi F; Titchener EB
    Nucleic Acids Res; 1976 Aug; 3(8):2129-42. PubMed ID: 787931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precursor relationship of phenylalanine transfer ribonucleic acid from Escherichia coli treated with chloramphenicol or starved for iron, methionine, or cysteine.
    Juarez H; Skjold AC; Hedgcoth C
    J Bacteriol; 1975 Jan; 121(1):44-54. PubMed ID: 46864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polysome stability in relaxed and stringent strain of Escherichia coli during amino acid starvation.
    Sells BH; Ennis HL
    J Bacteriol; 1970 Jun; 102(3):666-71. PubMed ID: 4914072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-sensitive relaxed Phenotype in a stringent strain of Escherichia coli.
    Atherly AG
    J Bacteriol; 1973 Jan; 113(1):178-82. PubMed ID: 4569401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of a specific messenger RNA during amino acid starvation of Escherichia coli.
    Edlin G; Stent GS; Baker RF; Yanofsky C
    J Mol Biol; 1968 Oct; 37(2):257-68. PubMed ID: 4939043
    [No Abstract]   [Full Text] [Related]  

  • 16. A temperature-sensitive glycyl-transfer ribonucleic acid synthetase mutant of Escherichia coli.
    Roback ER; Friesen JD
    Can J Microbiol; 1973 Apr; 19(4):421-6. PubMed ID: 4573325
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of intracellular protein breakdown in stringent and relaxed strains of E. coli,
    Rafaeli-Eshkol D; Hershko A
    Cell; 1974 May; 2(1):31-5. PubMed ID: 4607002
    [No Abstract]   [Full Text] [Related]  

  • 18. Amino acid control over deoxyribonucleic acid synthesis in Escherichia coli infected with T-even bacteriophage.
    Donini P
    J Bacteriol; 1970 Jun; 102(3):616-27. PubMed ID: 4914067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the ribosome in stringent control of bacterial RNA synthesis.
    de Boer HA; Raué HA; Ab G; Gruber M
    Biochim Biophys Acta; 1971 Aug; 246(1):157-60. PubMed ID: 4941746
    [No Abstract]   [Full Text] [Related]  

  • 20. Two compounds implicated in the function of the RC gene of Escherichia coli.
    Cashel M; Gallant J
    Nature; 1969 Mar; 221(5183):838-41. PubMed ID: 4885263
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.