These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 4904484)

  • 1. Energy charge and protein synthesis. Control of aminoacyl transfer ribonucleic acid synthetases.
    Brenner M; De Lorenzo F; Ames BN
    J Biol Chem; 1970 Jan; 245(2):450-2. PubMed ID: 4904484
    [No Abstract]   [Full Text] [Related]  

  • 2. Histidine regulation in Salmonella typhimurium. IX. Histidine transfer ribonucleic acid of the regulatory mutants.
    Brenner M; Ames BN
    J Biol Chem; 1972 Feb; 247(4):1080-8. PubMed ID: 4551510
    [No Abstract]   [Full Text] [Related]  

  • 3. Histidine regulation in salmonella typhimurium. XIV. Interaction of the histidyl transfer ribonucleic acid synthetase with histidine transfer ribonucleic acid.
    Brenner M; Lewis JA; Straus DS; De Lorenzo F; Ames BN
    J Biol Chem; 1972 Jul; 247(13):4333-9. PubMed ID: 4338485
    [No Abstract]   [Full Text] [Related]  

  • 4. Aminoacyl-tRNA synthetases: sone recent results and achievements.
    Kisselev LL; Favorova OO
    Adv Enzymol Relat Areas Mol Biol; 1974; 40(0):141-238. PubMed ID: 4365538
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of aminoacyl transfer ribonucleic acid synthetases by modified transfer ribonucleic acids.
    Roy KL; Tener GM
    Biochemistry; 1967 Sep; 6(9):2847-52. PubMed ID: 6055196
    [No Abstract]   [Full Text] [Related]  

  • 6. The pyrophosphate exchange reaction of histidyl-tRNA synthetase from Salmonella typhimurium: reaction parameters and inhibition by transfer ribonucleic acid.
    Di Natale P; Cimino F; De Lorenzo F
    FEBS Lett; 1974 Sep; 46(1):175-9. PubMed ID: 4371484
    [No Abstract]   [Full Text] [Related]  

  • 7. Histidine regulation in Salmonella typhimurium. X. Kinetic studies of mutant histidyl transfer ribonucleic acid synthetases.
    De Lorenzo F; Straus DS; Ames BN
    J Biol Chem; 1972 Apr; 247(8):2302-7. PubMed ID: 4553439
    [No Abstract]   [Full Text] [Related]  

  • 8. Interaction between energy charge and product feedback in the regulation of biosynthetic enzymes. Aspartokinase, phosphoribosyladenosine triphosphate synthetase, and phosphoribosyl pyrophosphate synthetase.
    Klungsoyr L; Hagemen JH; Fall L; Atkinson DE
    Biochemistry; 1968 Nov; 7(11):4035-40. PubMed ID: 4881060
    [No Abstract]   [Full Text] [Related]  

  • 9. Interaction of homologous transfer RNA with yeast aminoacyl-RNA synthetases.
    James HL; Morrison JC; Shiflet RN; Trass TC; Whybrew WD; Bucovaz ET
    Biochem Biophys Res Commun; 1968 Nov; 33(4):574-83. PubMed ID: 4301485
    [No Abstract]   [Full Text] [Related]  

  • 10. Biosynthesis of pseudouridine in transfer ribonucleic acid.
    Cortese R; Kammen HO; Spengler SJ; Ames BN
    J Biol Chem; 1974 Feb; 249(4):1103-8. PubMed ID: 4592259
    [No Abstract]   [Full Text] [Related]  

  • 11. Metabolic regulation of the arginyl and valyl transfer ribonucleic acid synthetases in bacteria.
    Parker J; Flashner M; Mckeever WG; Neidhardt FC
    J Biol Chem; 1974 Feb; 249(4):1044-53. PubMed ID: 4592258
    [No Abstract]   [Full Text] [Related]  

  • 12. Interaction between the first enzyme for histidine biosynthesis and histidyl transfer ribonucleic acid.
    Blasi F; Barton RW; Kovach JS; Goldberger RF
    J Bacteriol; 1971 May; 106(2):508-13. PubMed ID: 4929863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoacyl transfer ribonucleic acid synthetases from cell-free extract of Plasmodium berghei.
    Ilan J; Ilan J
    Science; 1969 May; 164(3879):560-2. PubMed ID: 4888104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UGA and non-triplet suppressor reading of the genetic code.
    Atkins JF; Ryce S
    Nature; 1974 Jun; 249(457):527-30. PubMed ID: 4599762
    [No Abstract]   [Full Text] [Related]  

  • 15. Neurospora arginyl transfer ribonucleic acid ligase. Binding and dissociation of transfer ribonucleic acid.
    Evans JA; Nazario M
    Biochemistry; 1974 Jul; 13(15):3092-8. PubMed ID: 4366469
    [No Abstract]   [Full Text] [Related]  

  • 16. Histidine regulation in Salmonella typhimurium. VII. Purification and general properties of the histidyl transfer ribonucleic acid synthetase.
    De Lorenzo F; Ames BN
    J Biol Chem; 1970 Apr; 245(7):1710-6. PubMed ID: 4985616
    [No Abstract]   [Full Text] [Related]  

  • 17. Selective inhibition of aminoacyl ribonucleic acid synthetases by aminoalkyl adenylates.
    Cassio D; Lemoine F; Waller JP; Sandrin E; Boissonnas RA
    Biochemistry; 1967 Mar; 6(3):827-36. PubMed ID: 4290596
    [No Abstract]   [Full Text] [Related]  

  • 18. Analysis of RNA turnover in bacteria using histidine as a radioactivity trap for (2-H)adenine nucleotides.
    Burton K
    J Mol Biol; 1976 Apr; 102(2):333-48. PubMed ID: 818393
    [No Abstract]   [Full Text] [Related]  

  • 19. Specificity of aminoacyl transfer ribonucleic acid synthetases from Escherichia coli K12.
    Kondo M; Woese CR
    Biochemistry; 1969 Oct; 8(10):4177-82. PubMed ID: 4899584
    [No Abstract]   [Full Text] [Related]  

  • 20. EFFECT OF BROMINATION ON THE AMINO ACID-ACCEPTING ACTIVITIES OF TRANSFER RIBONUCLEIC ACIDS.
    YU CT; ZAMECNIK PC
    Biochim Biophys Acta; 1963 Oct; 76():209-22. PubMed ID: 14097377
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.