These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 4905)
21. Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats and mice. Csanády GA; Guengerich FP; Bond JA Carcinogenesis; 1992 Jul; 13(7):1143-53. PubMed ID: 1638680 [TBL] [Abstract][Full Text] [Related]
22. Covalent binding of 14C- and 35S-labeled thiocarbamides in rat hepatic microsomes. Decker CJ; Doerge DR Biochem Pharmacol; 1992 Feb; 43(4):881-8. PubMed ID: 1371686 [TBL] [Abstract][Full Text] [Related]
23. The covalent binding of acetaminophen to protein. Evidence for cysteine residues as major sites of arylation in vitro. Streeter AJ; Dahlin DC; Nelson SD; Baillie TA Chem Biol Interact; 1984 Mar; 48(3):349-66. PubMed ID: 6713598 [TBL] [Abstract][Full Text] [Related]
24. The effect of enzyme induction on the stereoselective metabolism of optically pure (-)1R,2R- and (+)1S,2S-dihydroxy-1,2-dihydrobenz-[a]anthracenes to vicinal 1,2-dihydrodiol 3,4-epoxides by rat liver microsomes. Chou MW; Chiu PL; Fu PP; Yang SK Carcinogenesis; 1983; 4(5):629-38. PubMed ID: 6850995 [TBL] [Abstract][Full Text] [Related]
25. Characterization of a chemically reactive propranolol metabolite that binds to microsomal proteins of rat liver. Narimatsu S; Watanabe T; Masubuchi Y; Horie T; Kumagai Y; Cho AK; Imaoka S; Funae Y; Ishikawa T; Suzuki T Chem Res Toxicol; 1995; 8(5):721-8. PubMed ID: 7548755 [TBL] [Abstract][Full Text] [Related]
26. Oxidative microsomal metabolism of 1-nitropyrene and DNA-binding of oxidized metabolites following nitroreduction. Djurić Z; Fifer EK; Howard PC; Beland FA Carcinogenesis; 1986 Jul; 7(7):1073-9. PubMed ID: 3755082 [TBL] [Abstract][Full Text] [Related]
27. Hepatic and pulmonary microsomal metabolism of naphthalene to glutathione adducts: factors affecting the relative rates of conjugate formation. Buckpitt AR; Bahnson LS; Franklin RB J Pharmacol Exp Ther; 1984 Nov; 231(2):291-300. PubMed ID: 6491983 [TBL] [Abstract][Full Text] [Related]
28. Hydrolysis of bisphenol A diglycidylether by epoxide hydrolases in cytosolic and microsomal fractions of mouse liver and skin: inhibition by bis epoxycyclopentylether and the effects upon the covalent binding to mouse skin DNA. Bentley P; Bieri F; Kuster H; Muakkassah-Kelly S; Sagelsdorff P; Stäubli W; Waechter F Carcinogenesis; 1989 Feb; 10(2):321-7. PubMed ID: 2912584 [TBL] [Abstract][Full Text] [Related]
29. Spectral evidence for 2,2,3-trichloro-oxirane formation during microsomal trichloroethylene oxidation. Uehleke H; Tabarelli-Poplawski S; Bonse G; Henschler D Arch Toxicol; 1977 Jun; 37(2):95-105. PubMed ID: 18130 [TBL] [Abstract][Full Text] [Related]
30. Microsomal activation of chlordane isomers to derivatives that irreversibly interact with cellular macromolecules. Brimfield AA; Street JC J Toxicol Environ Health; 1981 Feb; 7(2):193-206. PubMed ID: 6164795 [TBL] [Abstract][Full Text] [Related]
31. Involvement of phenolic metabolites in the irreversible protein-binding of 14C-bromobenzene catalysed by rat liver microsomes. Hesse S; Wolff T; Mezger M Arch Toxicol Suppl; 1980; 4():358-62. PubMed ID: 6933937 [TBL] [Abstract][Full Text] [Related]
33. Oxidative activation of the thiophene ring by hepatic enzymes. Hydroxylation and formation of electrophilic metabolites during metabolism of tienilic acid and its isomer by rat liver microsomes. Dansette PM; Amar C; Smith C; Pons C; Mansuy D Biochem Pharmacol; 1990 Mar; 39(5):911-8. PubMed ID: 2310416 [TBL] [Abstract][Full Text] [Related]
34. Visualization of a covalent intermediate between microsomal epoxide hydrolase, but not cholesterol epoxide hydrolase, and their substrates. Müller F; Arand M; Frank H; Seidel A; Hinz W; Winkler L; Hänel K; Blée E; Beetham JK; Hammock BD; Oesch F Eur J Biochem; 1997 Apr; 245(2):490-6. PubMed ID: 9151984 [TBL] [Abstract][Full Text] [Related]
35. Biochemical properties of short- and long-chain rat liver microsomal trans-2-enoyl coenzyme A reductase. Nagi MN; Prasad MR; Cook L; Cinti DL Arch Biochem Biophys; 1983 Oct; 226(1):50-64. PubMed ID: 6416174 [TBL] [Abstract][Full Text] [Related]
36. Role of P450IIE1 in the metabolism of 3-hydroxypyridine, a constituent of tobacco smoke: redox cycling and DNA strand scission by the metabolite 2,5-dihydroxypyridine. Kim SG; Novak RF Cancer Res; 1990 Sep; 50(17):5333-9. PubMed ID: 2167153 [TBL] [Abstract][Full Text] [Related]
37. Implication of rifampicin-quinone in the irreversible binding of rifampicin to macromolecules. Bolt HM; Remmer H Xenobiotica; 1976 Jan; 6(1):21-32. PubMed ID: 5822 [TBL] [Abstract][Full Text] [Related]
38. The in vitro formation of glutathione conjugates with the microsomally activated pulmonary bronchiolar aklylating agent and cytotoxin, 4-ipomeanol. Buckpitt AR; Boyd MR J Pharmacol Exp Ther; 1980 Oct; 215(1):97-103. PubMed ID: 7452496 [TBL] [Abstract][Full Text] [Related]
39. Mechanism for isaxonine hepatitis. I. Metabolic activation by mouse and human cytochrome P-450. Lettéron P; Fouin-Fortunet H; Tinel M; Danan G; Belghiti J; Pessayre D J Pharmacol Exp Ther; 1984 Jun; 229(3):845-50. PubMed ID: 6547179 [TBL] [Abstract][Full Text] [Related]
40. Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations. Madan A; Parkinson A Drug Metab Dispos; 1996 Dec; 24(12):1307-13. PubMed ID: 8971135 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]