These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 4905221)

  • 21. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature.
    Graham AF; Mason DR; Maxwell FJ; Peck MW
    Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride.
    Chea FP; Chen Y; Montville TJ; Schaffner DW
    J Food Prot; 2000 Aug; 63(8):1071-9. PubMed ID: 10945583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intrinsic factors in meat products counteracting botulinogenic conditions.
    Blanche Koelensmid WA; van Rhee R
    Antonie Van Leeuwenhoek; 1968; 34(3):287-97. PubMed ID: 4891323
    [No Abstract]   [Full Text] [Related]  

  • 24. Factors affecting the germination of spores of Clostridium botulinum type E.
    Ando Y; Iida H
    Jpn J Microbiol; 1970 Sep; 14(5):361-70. PubMed ID: 4919766
    [No Abstract]   [Full Text] [Related]  

  • 25. Combined effect of water activity, pH and temperature on the growth of Clostridium botulinum from spore and vegetative cell inocula.
    Baird-Parker AC; Freame B
    J Appl Bacteriol; 1967 Dec; 30(3):420-9. PubMed ID: 4865469
    [No Abstract]   [Full Text] [Related]  

  • 26. Spore germination and vegetative growth of Clostridium botulinum type E in synthetic media.
    Ward BQ; Carroll BJ
    Can J Microbiol; 1966 Dec; 12(6):1145-56. PubMed ID: 5336410
    [No Abstract]   [Full Text] [Related]  

  • 27. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat injury and recovery of vegetative cells of Clostridium botulinum type E.
    Pierson MD; Payne SL; Ades GL
    Appl Microbiol; 1974 Feb; 27(2):425-6. PubMed ID: 4595963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Another type of Clostridium botulinum.
    Giménez DF; Ciccarelli AS
    Zentralbl Bakteriol Orig; 1970; 215(2):221-4. PubMed ID: 4922309
    [No Abstract]   [Full Text] [Related]  

  • 30. The germination requirements of spores of Clostridium botulinum type E.
    Ando Y
    Jpn J Microbiol; 1971 Nov; 15(6):515-25. PubMed ID: 4946422
    [No Abstract]   [Full Text] [Related]  

  • 31. Combining heat treatment and subsequent incubation temperature to prevent growth from spores of non-proteolytic Clostridium botulinum.
    Stringer SC; Fairbairn DA; Peck MW
    J Appl Microbiol; 1997 Jan; 82(1):128-36. PubMed ID: 9113882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of enrichment of Wrzosek's culture medium with some amino acids on the growth of Cl. botulinum and the biosynthesis of its toxins].
    Matras J
    Med Dosw Mikrobiol; 1974; 26(4):291-301. PubMed ID: 4613973
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of irradiation temperature in the range--196 to 95C on the resistance of spores of Clostridium botulinum 33A in cooked beef.
    Grecz N; Walker AA; Anellis A; Berkowitz D
    Can J Microbiol; 1971 Feb; 17(2):135-42. PubMed ID: 4926793
    [No Abstract]   [Full Text] [Related]  

  • 34. Response surface model for prediction of growth parameters from spores of Clostridium sporogenes under different experimental conditions.
    Dong Q; Tu K; Guo L; Li H; Zhao Y
    Food Microbiol; 2007 Sep; 24(6):624-32. PubMed ID: 17418314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Symposium on bacterial spores: VII. Recovering spores damaged by heat, ionizing radiations or ethylene oxide.
    Roberts TA
    J Appl Bacteriol; 1970 Mar; 33(1):74-94. PubMed ID: 5447476
    [No Abstract]   [Full Text] [Related]  

  • 36. Effect of water activity and pH on growth and toxin production by Clostridium botulinum type G.
    Briozzo J; de Lagarde EA; Chirife J; Parada JL
    Appl Environ Microbiol; 1986 Apr; 51(4):844-8. PubMed ID: 3518631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low temperature growth characteristics of clostridia.
    Roberts TA; Hobbs G
    J Appl Bacteriol; 1968 Mar; 31(1):75-88. PubMed ID: 4296971
    [No Abstract]   [Full Text] [Related]  

  • 38. [Changes in chemical composition of nutrient media during growth and toxin formation of Cl. botulinum type F].
    Perova EV; Ivanova LG
    Zh Mikrobiol Epidemiol Immunobiol; 1971 Apr; 48(4):134-9. PubMed ID: 4934799
    [No Abstract]   [Full Text] [Related]  

  • 39. Quantitation of pH- and salt-tolerant subpopulations from Clostridium botulinum.
    Montville TJ
    Appl Environ Microbiol; 1984 Jan; 47(1):28-30. PubMed ID: 6364971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of types A and B spores of Clostridium botulinum by the biphasic method: effect on spore population, radiation resistance, and toxigenicity.
    Anellis A; Berkowitz D; Kemper D; Rowley DB
    Appl Microbiol; 1972 Apr; 23(4):734-9. PubMed ID: 4111814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.