These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 4905222)

  • 21. Physiological studies on Clostridium botulinum, type F. Three year summary report of progress, March 1, 1965--November 30, 1967. ORO-3347-5.
    Walls NW
    ORO Rep; 1967 Jul; ():1-15. PubMed ID: 4890185
    [No Abstract]   [Full Text] [Related]  

  • 22. Effect of irradiation temperature in the range--196 to 95C on the resistance of spores of Clostridium botulinum 33A in cooked beef.
    Grecz N; Walker AA; Anellis A; Berkowitz D
    Can J Microbiol; 1971 Feb; 17(2):135-42. PubMed ID: 4926793
    [No Abstract]   [Full Text] [Related]  

  • 23. Outgrowth and toxin production of nonproteolytic type B Clostridium botulinum at 3.3 to 5.6 C.
    Eklund MW; Wieler DI; Poysky FT
    J Bacteriol; 1967 Apr; 93(4):1461-2. PubMed ID: 5340312
    [No Abstract]   [Full Text] [Related]  

  • 24. [Bacteriological examinations of tinned fish contaminated with Cl. botulinum E after a 3-year storage].
    Skoczek A; Matras J
    Med Weter; 1976 Dec; 32(12):754-6. PubMed ID: 797600
    [No Abstract]   [Full Text] [Related]  

  • 25. Inhibition of growth of nonproteolytic Clostridium botulinum type B in sous vide cooked meat products is achieved by using thermal processing but not nisin.
    Lindström M; Mokkila M; Skyttä E; Hyytiä-Trees E; Lähteenmäki L; Hielm S; Ahvenainen R; Korkeala H
    J Food Prot; 2001 Jun; 64(6):838-44. PubMed ID: 11403135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Survival and outgrowth of Clostridium botulinum type E spores in smoked fish.
    Christiansen LN; Deffner J; Foster EM; Sugiyama H
    Appl Microbiol; 1968 Jan; 16(1):133-7. PubMed ID: 4865899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt.
    Peterson ME; Paranjpye RN; Poysky FT; Pelroy GA; Eklund MW
    J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products.
    Lindström M; Nevas M; Hielm S; Lähteenmäki L; Peck MW; Korkeala H
    Appl Environ Microbiol; 2003 Jul; 69(7):4029-36. PubMed ID: 12839778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toxicity of spores of Clostridium botulinum strain 33A in irradiated ground beef.
    Fernandez E; Tang T; Grecz N
    J Gen Microbiol; 1969 Apr; 56(1):15-21. PubMed ID: 4891925
    [No Abstract]   [Full Text] [Related]  

  • 30. Effect of irradiation temperature on inactivation of Clostridium botulinum toxin type E by gamma rays.
    Licciardello JJ; Ribich CA; Goldblith SA
    J Appl Bacteriol; 1969 Dec; 32(4):476-80. PubMed ID: 4905078
    [No Abstract]   [Full Text] [Related]  

  • 31. Study of the nutritional requirements and toxin production of Clostridium botulinum type F.
    Holdeman LV; Smith LD
    Can J Microbiol; 1965 Dec; 11(6):1009-19. PubMed ID: 5326029
    [No Abstract]   [Full Text] [Related]  

  • 32. Effects on growth and toxin production of exposure of spores of Clostridium botulinum type F to sublethal doses of gamma irradiation.
    Williams-Walls NJ
    Appl Microbiol; 1969 Jan; 17(1):128-34. PubMed ID: 4886855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Changes in chemical composition of nutrient media during growth and toxin formation of Cl. botulinum type F].
    Perova EV; Ivanova LG
    Zh Mikrobiol Epidemiol Immunobiol; 1971 Apr; 48(4):134-9. PubMed ID: 4934799
    [No Abstract]   [Full Text] [Related]  

  • 34. Effect of lysozyme concentration, heating at 90 degrees C, and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum.
    Peck MW; Fernandez PS
    Lett Appl Microbiol; 1995 Jul; 21(1):50-4. PubMed ID: 7662337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of and toxin production by nonproteolytic Clostridium botulinum in cooked puréed vegetables at refrigeration temperatures.
    Carlin F; Peck MW
    Appl Environ Microbiol; 1996 Aug; 62(8):3069-72. PubMed ID: 8702303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Survival of Clostridium botulinum spores in foods treated by heat, ionizing radiation, or related procedures.
    Ingram M; Roberts TA
    Ann Inst Pasteur Lille; 1968; 19():123-37. PubMed ID: 4890974
    [No Abstract]   [Full Text] [Related]  

  • 37. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures.
    Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC
    Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological studies on Clostridium botulinum, type F. Progress report, December 1, 1966--November 30, 1967. ORO-3347-4.
    Walls NW
    ORO Rep; 1967 Jul; ():1-60. PubMed ID: 4890186
    [No Abstract]   [Full Text] [Related]  

  • 39. [Effect of direct sunbeams on spores of Clostridium botulinum and Clostridium perfringens of the types A].
    Mikitiuk PV
    Mikrobiol Zh; 1975; 37(2):152-4. PubMed ID: 175248
    [No Abstract]   [Full Text] [Related]  

  • 40. [Cl. botulinum type F toxin formation on non-meat nutrient media].
    Perova EV; Bulatova TI; Lukina LS
    Zh Mikrobiol Epidemiol Immunobiol; 1970 Sep; 47(9):46-51. PubMed ID: 4932823
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.