These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 490621)

  • 1. Movement of thallous ion across the ascites cell membrane.
    Bakker-Grunwald T
    J Membr Biol; 1979 May; 47(2):171-83. PubMed ID: 490621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of radioactive thallium and potassium fluxes in the giant axon of the squid.
    Landowne D
    J Physiol; 1975 Oct; 252(1):79-96. PubMed ID: 1202199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cation flux in the ehrlich ascites tumor cell. Evidence for Na+-for-Na+ and K+-for-K+ exchange diffusion.
    Tupper JT
    Biochim Biophys Acta; 1975 Jul; 394(4):586-96. PubMed ID: 233946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nitrogen mustard on potassium transport systems and membrane structure of Ehrlich ascites tumor cells.
    Grunicke H; Doppler W; Finch SA; Greinert R; Grünewald K; Hofmann J; Maly K; Stier A; Scheidl F; Thomas JK
    Adv Enzyme Regul; 1985; 23():277-90. PubMed ID: 3840950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation permeability and ouabain-insensitive cation flux in the Ehrlich ascites tumor cell.
    Mills B; Tupper JT
    J Membr Biol; 1975; 20(1-2):75-97. PubMed ID: 1121028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell cycle dependent changes in potassium transport.
    Mills B; Tupper JT
    J Cell Physiol; 1976 Sep; 89(1):123-32. PubMed ID: 956277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K+ influx components in ascites cells: the effects of agents interacting with the (Na+ + K+)-pump.
    Bakker-Grunwald T; Andrew JS; Neville MC
    J Membr Biol; 1980; 52(2):141-6. PubMed ID: 6245215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 86Rb+ fluxes in Chinese hamster ovary cells as a function of membrane cholesterol content.
    Bakker-Grunwald T; Sinensky M
    Biochim Biophys Acta; 1979 Dec; 558(3):296-306. PubMed ID: 508750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anion-dependent transport of thallous ions through human erythrocyte membrane.
    Skulskii IA; Gusev GP; Sherstobitov AO; Manninen V
    J Membr Biol; 1992 Dec; 130(3):219-25. PubMed ID: 1491427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ouabain upon diuretic-sensitive K+ transport in cultured cells. Evidence for separate modes of operation of the transporter.
    Aiton JF; Simmons NL
    Biochim Biophys Acta; 1983 Oct; 734(2):279-89. PubMed ID: 6615835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ouabain-sensitive thallium fluxes in smooth muscle of rabbit uterus.
    Johns A
    J Physiol; 1980 Dec; 309():391-403. PubMed ID: 7252871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New aspects of cellular thallium uptake: Tl+-Na+-2Cl(-)-cotransport is the central mechanism of ion uptake.
    Sessler MJ; Geck P; Maul FD; Hör G; Munz DL
    Nuklearmedizin; 1986 Feb; 25(1):24-7. PubMed ID: 2940514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active transport of thallous ions by Streptococcus lactis.
    Kashket ER
    J Biol Chem; 1979 Sep; 254(17):8129-31. PubMed ID: 468811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thallium inhibition of ouabain-sensitive sodium transport and of the (Na+ plus K+)-ATPase in human erythrocytes.
    Skulskii IA; Manninen V; Järnefelt J
    Biochim Biophys Acta; 1975 Jul; 394(4):569-76. PubMed ID: 125106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting the relative magnitudes of the ouabain-sensitive and the ouabain-insensitive fluxes of thallium ion in erythrocytes.
    Skulskii IA; Manninen V; Järnefelt J
    Biochim Biophys Acta; 1978 Jan; 506(2):233-41. PubMed ID: 620031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Furosemide-sensitive thallium fluxes in smooth muscle of rabbit uterus.
    Johns A; Cutshaw SV
    Am J Physiol; 1983 Dec; 245(6):F778-83. PubMed ID: 6660296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thallium and the sodium pump in human red cells.
    Cavieres JD; Ellory JC
    J Physiol; 1974 Nov; 243(1):243-66. PubMed ID: 4449062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.
    Wiley JS; Cooper RA
    J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the concanavalin A-induced increase in lymphocyte cell membrane permeability by furosemide.
    Averdunk R; Günther T
    Immunobiology; 1980 Dec; 157(4-5):358-64. PubMed ID: 7450817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.