BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 490658)

  • 1. Oxidative phosphorylation rate: an index for evaluation of mitochondrial function in myocardial ischaemia.
    Edoute Y; Kotzé JC; Lochner A
    J Mol Cell Cardiol; 1979 Aug; 11(8):831-3. PubMed ID: 490658
    [No Abstract]   [Full Text] [Related]  

  • 2. Mitochondrial acyl-CoA, adenine nucleotide translocase activity and oxidative phosphorylation in myocardial ischaemia.
    Lochner A; Van Niekerk I; Kotzé JC
    J Mol Cell Cardiol; 1981 Nov; 13(11):991-7. PubMed ID: 6275089
    [No Abstract]   [Full Text] [Related]  

  • 3. [Effect of hyperbaric oxygenation on the oxidative phosphorylation in mitochondria of normal and ischemic myocardium].
    Reznikov KM; Leonov AN; Obolenskiĭ AL
    Vopr Med Khim; 1982; 28(6):24-7. PubMed ID: 7157719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Creatine kinase reaction in cardiac mitoplasts of rats. Its relation to oxidative phosphorylation].
    Kuznetsov AV; Saks VA; Kupriianov VV
    Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1985; 8(1):7-14. PubMed ID: 4005057
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of physical conditioning on cardiac mitochondrial function.
    Penpargkul S; Schwartz A; Scheuer J
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Dec; 45(6):978-86. PubMed ID: 730603
    [No Abstract]   [Full Text] [Related]  

  • 6. The hypoxic, low-flow perfused rat heart: characterization as a model of global ischaemia.
    de Kock A; Lochner A; Kotzé JC; Gevers W
    Basic Res Cardiol; 1978; 73(5):506-22. PubMed ID: 728033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diazoxide protects mitochondria from anoxic injury: implications for myopreservation.
    Ozcan C; Holmuhamedov EL; Jahangir A; Terzic A
    J Thorac Cardiovasc Surg; 2001 Feb; 121(2):298-306. PubMed ID: 11174735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal mitochondrial oxidative phosphorylation of ischemic myocardium reversed by Ca2+-chelating agents.
    Peng CF; Kane JJ; Murphy ML; Straub KD
    J Mol Cell Cardiol; 1977 Nov; 9(11):897-908. PubMed ID: 412978
    [No Abstract]   [Full Text] [Related]  

  • 9. Mitochondrial function after global cardiac ischemia and reperfusion: influences of organelle isolation protocols.
    Shlafer M; Kirsh M; Lucchesi BR; Slater AD; Warren S
    Basic Res Cardiol; 1981; 76(3):250-66. PubMed ID: 6791632
    [No Abstract]   [Full Text] [Related]  

  • 10. [Acceleration of the synthesis of cardiac adenine nucleotides from adenosine as affected by propranolol].
    Giacomelli M; Aussedat J; Lavanchy N; Rossi A
    C R Acad Sci III; 1984; 299(19):779-84. PubMed ID: 6442183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative phosphorylation function of two mitochondrial preparations from heart: effects of ischaemia and cytochrome C.
    van Jaarsveld H; Lochner A
    Basic Res Cardiol; 1982; 77(4):388-403. PubMed ID: 6293454
    [No Abstract]   [Full Text] [Related]  

  • 12. [The metabolism and mechanical function of hypoxic and ischemic myocardium: a comparative study (author's transl)].
    Ferrari R; Nayler WG
    G Ital Cardiol; 1979; 9(9):954-64. PubMed ID: 520744
    [No Abstract]   [Full Text] [Related]  

  • 13. Changes in myocardial mitochondrial respiration after ligation of the coronary artery in pigs.
    Muscari C; Turinetto B; Colì G; Galeazzi M; Cattabriga I; Finelli C; Biagetti L; Guarnieri C; Caldarera CM
    Cardioscience; 1990 Dec; 1(4):261-4. PubMed ID: 1983332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propranolol effects on myocardial ultrastructure and high energy phosphates in anesthetized dogs subjected to ischemia and reperfusion.
    Ziegelhoffer A; Das PK; Sharma GP; Singal PK; Dhalla NS
    Can J Physiol Pharmacol; 1979 Sep; 57(9):979-86. PubMed ID: 519539
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of mitochondrial respiration in intact tissues: a mathematical model.
    Wilson DF; Owen CS; Erecińska M
    Adv Exp Med Biol; 1977 Jul 4-7; 94():279-87. PubMed ID: 207164
    [No Abstract]   [Full Text] [Related]  

  • 16. Mitochondrial Ca2+ fluxes and levels during ischaemia and reperfusion: possible mechanisms.
    Lochner A; van der Merwe N; de Villiers M; Steinmann C; Kotzé JC
    Biochim Biophys Acta; 1987 Jan; 927(1):8-17. PubMed ID: 3790621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of D,L-carnitine on the response of the isolated heart of the rat to ischaemia and reperfusion: relation to mitochondrial function.
    Duan JM; Karmazyn M
    Br J Pharmacol; 1989 Dec; 98(4):1319-27. PubMed ID: 2611494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ATP-and ADP-binding sites in mitochondrial coupling factor F1 and their possible role in oxidative phosphorylation.
    Slater EC; Kemp A; van der Kraan I; Muller JL; Roveri OA; Verschoor GJ; Wagenvoord RJ; Wielders JP
    FEBS Lett; 1979 Jul; 103(1):7-11. PubMed ID: 467655
    [No Abstract]   [Full Text] [Related]  

  • 19. [Effect of insulin on oxidative phosphorylation in the liver and heart mitochondria of adrenalectomized rats].
    Sutkovoi DA; Alferov AN; Letov VN
    Ukr Biokhim Zh (1978); 1978; 50(3):332-5. PubMed ID: 664045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of allopurinol and deferrioxamine on rat heart mitochondrial oxidative phosphorylation after normothermic ischemic cardiac arrest and of reperfusion.
    van Jaarsveld H; Groenewald AJ; Potgieter GM; Barnard SP; Vermaak WJ; Barnard HC
    Res Commun Chem Pathol Pharmacol; 1988 Dec; 62(3):419-34. PubMed ID: 2851863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.