These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 4906613)

  • 1. [Synthesis and properties of adenosine-5' and guanosine-5' phosphohypophosphates, analogs of ATP and GTP].
    Rémy P; Setondji J; Engel ML; Dirheimer G; Ebel JP
    Bull Soc Chim Biol (Paris); 1969; 51(10):1548-9. PubMed ID: 4906613
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibition by multhiomycin of T factor- and GTP-dependent binding of phenylalanyl-tRNA to ribosomes and GTP hydrolysis associated with it.
    Tanaka T; Sakaguchi K; Yonehara H
    J Biochem; 1971 Jun; 69(6):1127-30. PubMed ID: 4933400
    [No Abstract]   [Full Text] [Related]  

  • 3. Initiator codons in eukaryotes.
    Brown JC; Smith AE
    Nature; 1970 May; 226(5246):610-2. PubMed ID: 4910674
    [No Abstract]   [Full Text] [Related]  

  • 4. [Influence of dimethyl sulfoxide on cell-free protein synthesis].
    Wacker A; Mohrbutter KP
    Naturwissenschaften; 1967 Feb; 54(4):90-1. PubMed ID: 4876143
    [No Abstract]   [Full Text] [Related]  

  • 5. Synthesis of rabbit globin in a cell free system.
    Hunt JA
    Hamatol Bluttransfus; 1972; 10():89-93. PubMed ID: 4584501
    [No Abstract]   [Full Text] [Related]  

  • 6. Study of the mechanism of translocation in ribosomes. 1. Polyphenylalanine synthesis in Escherichia coli ribosomes without participation of guanosine-5'-triphosphate and protein translation factors.
    Gavrilova LP; Smolyaninov VV
    Mol Biol; 1971; 5(6):710-7. PubMed ID: 4949554
    [No Abstract]   [Full Text] [Related]  

  • 7. Binding of synthetic peptidyl-tRNA to the ribosomes and enzymatic synthesis of the polypeptide chain.
    Semenkov YP; Kirillov SV; Makhno VI; Shvartsman AL; Bresler SE
    Mol Biol; 1971; 5(5):587-94. PubMed ID: 4949527
    [No Abstract]   [Full Text] [Related]  

  • 8. Formation of a ternary complex between formylatable yeast Met-tRNA, GTP and binding factor T of yeast and of E. coli.
    Richter D; Lipmann F
    Nature; 1970 Sep; 227(5264):1212-4. PubMed ID: 4916410
    [No Abstract]   [Full Text] [Related]  

  • 9. Separation of calf liver transfer fraction FI into a GTP-binding factor and different GTP-splitting factors.
    Kloppstech K; Schumann G; Klink F
    Hoppe Seylers Z Physiol Chem; 1969 Aug; 350(8):1027-31. PubMed ID: 5806946
    [No Abstract]   [Full Text] [Related]  

  • 10. Free 3'-OH group of the terminal adenosine of the tRNA molecule is essential for the synthesis in vitro of guanosine tetraphosphate and pentaphosphate in a ribosomal system from Escherichia coli.
    Sprinzl M; Richter D
    Eur J Biochem; 1976 Dec; 71(1):171-6. PubMed ID: 795660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analogs of nucleoside polyphosphates. 3. Action of adenosine 5'-phosphohypophosphate on hexokinase and on valyl-tRNA synthetase].
    Remy P; Setondji J; Dirheimer G; Ebel JP
    Biochim Biophys Acta; 1970 Mar; 204(1):31-8. PubMed ID: 4908651
    [No Abstract]   [Full Text] [Related]  

  • 12. Interaction of nitrogen mustard with polyribonucleotides, ribosomes, and enzymes involved in protein synthesis in a cell-free system.
    Johnson JM; Ruddon RW
    Mol Pharmacol; 1967 Mar; 3(2):195-203. PubMed ID: 5342407
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of messenger RNA and peptidyl-tRNA in the synthesis of the guanine nucleotides MS I and MS II by ribosomes in vivo.
    de Boer HA; van Ooyen AJ; Ab G; Gruber M
    FEBS Lett; 1973 Mar; 30(3):335-8. PubMed ID: 4573439
    [No Abstract]   [Full Text] [Related]  

  • 14. Ribosome formation from subunits: dependence on formylmethionyl-transfer RNA in extracts from E. coli.
    Kondo M; Eggerston G; Eisenstadt J; Lengyel P
    Nature; 1968 Oct; 220(5165):368-71. PubMed ID: 4879330
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of high salt concentration on fidelity of translation by Escherichia coli ribosomes.
    Chomczyński P; Szafrański P
    Acta Biochim Pol; 1971; 18(2):163-70. PubMed ID: 4939214
    [No Abstract]   [Full Text] [Related]  

  • 16. Formation of guanosine tetraphosphate (magic spot I) in homologous and heterologous systems.
    Richter D
    FEBS Lett; 1973 Aug; 34(2):291-4. PubMed ID: 4355915
    [No Abstract]   [Full Text] [Related]  

  • 17. Two distinct transfer enzymes from rabbit reticulocytes with ribosome dependent guanosine triphosphate phosphohydrolase activity.
    McKeehan W; Sepulveda P; Lin SY; Hardesty B
    Biochem Biophys Res Commun; 1969 Mar; 34(5):668-72. PubMed ID: 4305066
    [No Abstract]   [Full Text] [Related]  

  • 18. Ribosomal synthesis of guanosine tetra- and pentaphosphate with mRNAs of different chain length.
    Giesen M; Erdmann VA
    FEBS Lett; 1977 Nov; 83(1):125-7. PubMed ID: 336399
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect of guanosine 5'-triphosphate analogues on protein synthesis.
    Uno H; Oyabu S; Otsuka E; Ikehara M
    Biochim Biophys Acta; 1971 Jan; 228(1):282-8. PubMed ID: 4926030
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of univalent cations and role of GTP and supernatant factors during biosynthesis of polylysine chain.
    Pulkrábek P; Rychlík I
    Biochim Biophys Acta; 1968 Jan; 155(1):219-27. PubMed ID: 4869451
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.