These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4908669)

  • 21. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum.
    Fry B; Gest H; Hayes JM
    FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methionine-to-cysteine recycling in Klebsiella aerogenes.
    Seiflein TA; Lawrence JG
    J Bacteriol; 2001 Jan; 183(1):336-46. PubMed ID: 11114934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced sulfur compound oxidation by Thiobacillus caldus.
    Hallberg KB; Dopson M; Lindström EB
    J Bacteriol; 1996 Jan; 178(1):6-11. PubMed ID: 8550443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stable isotope fractionation by Clostridium pasteurianum. 2. Regulation of sulfite reductases by sulfur amino acids and their influence on sulfur isotope fractionation during SO32- and SO42- reduction.
    Laishley EJ; Krouse HR
    Can J Microbiol; 1978 Jun; 24(6):716-24. PubMed ID: 667738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical studies on sulfate-reducing bacteria. XIV. Enzyme levels of adenylylsulfate reductase, inorganic pyrophosphatase, sulfite reductase, hydrogenase, and adenosine triphosphatase in cells grown on sulfate, sulfite, and thiosulfate.
    Kobayashi K; Morisawa Y; Ishituka T; Ishimoto M
    J Biochem; 1975 Nov; 78(5):1079-85. PubMed ID: 175050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment.
    Finster K; Liesack W; Thamdrup B
    Appl Environ Microbiol; 1998 Jan; 64(1):119-25. PubMed ID: 9435068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of triazole on cysteine biosynthesis in Salmonella typhimurium.
    Hulanicka D; Klopotowski T; Smith DA
    J Gen Microbiol; 1972 Sep; 72(2):291-301. PubMed ID: 4562307
    [No Abstract]   [Full Text] [Related]  

  • 28. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation.
    Santos AA; Venceslau SS; Grein F; Leavitt WD; Dahl C; Johnston DT; Pereira IA
    Science; 2015 Dec; 350(6267):1541-5. PubMed ID: 26680199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of stable sulfur isotope labelling to elucidate sulfur metabolism by Clostridium pasteurianum.
    McCready RG; Laishley EJ; Krouse HR
    Arch Microbiol; 1976 Sep; 109(3):315-7. PubMed ID: 985000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of arylsulfatase synthesis by sulfur compounds in Klebsiella aerogenes.
    Adachi T; Murooka Y; Harada T
    J Bacteriol; 1975 Jan; 121(1):29-35. PubMed ID: 1116990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of thiosulfate in bisulfite reduction as catalyzed by Desulfovibrio vulgaris.
    Findley JE; Akagi JM
    J Bacteriol; 1970 Sep; 103(3):741-4. PubMed ID: 5474884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. METABOLIC REGULATION OF ADENOSINE TRIPHOSPHATE SULFURYLASE IN YEAST.
    DEVITO PC; DREYFUSS J
    J Bacteriol; 1964 Nov; 88(5):1341-8. PubMed ID: 14234791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The SO4= transport system of Chlorella pyrenoidosa and its regulation. I. Kinetic study of permeation].
    Vallée M; Jeanjean R
    Biochim Biophys Acta; 1968 Jun; 150(4):599-606. PubMed ID: 5660367
    [No Abstract]   [Full Text] [Related]  

  • 34. Enrichment of sulfidogenic bacteria from the human intestinal tract.
    Feng Y; Stams AJM; de Vos WM; Sánchez-Andrea I
    FEMS Microbiol Lett; 2017 Feb; 364(4):. PubMed ID: 28158432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulphur and carbon isotope fractionation by Salmonella heidelberg during anaerobic SO3= reduction in trypticase soy broth medium.
    Krouse HR; Sasaki A
    Can J Microbiol; 1968 Apr; 14(4):417-22. PubMed ID: 5646842
    [No Abstract]   [Full Text] [Related]  

  • 36. Sulfur isotope fractionation by Salmonella heidelberg: inverse isotope effects during growth on high concentrations of Na2SO3.
    McCready RG; Krouse HR
    Can J Microbiol; 1979 Dec; 25(12):1387-93. PubMed ID: 534960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Characteristics of the sulfate requirement of propionic acid bacteria].
    Charakhch'ian IA; Vorob'eva LI
    Mikrobiologiia; 1984; 53(1):38-42. PubMed ID: 6708841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical studies on sulfate-ruducing bacteria. 8. Sulfite reductase from Desulfovibrio vulgaris--mechanism of trithionate, thiosulfate, and sulfide formation and enzymatic properties.
    Kobayashi K; Seki Y; Ishimoto M
    J Biochem; 1974 Mar; 75(3):519-29. PubMed ID: 4365884
    [No Abstract]   [Full Text] [Related]  

  • 39. Sulphur in biology. General discussion.
    Ciba Found Symp; 1979; (72):2307. PubMed ID: 398764
    [No Abstract]   [Full Text] [Related]  

  • 40. Inorganic sulphate, sulphite and sulphide as sulphur donors in the biosynthesis of sulphur amino acids in germ-free and conventional rats.
    Huovinen JA; Gustafsson BE
    Biochim Biophys Acta; 1967 Apr; 136(3):441-7. PubMed ID: 6048261
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.