These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 4908791)

  • 1. Aerobic heterotrophic bacteria indigenous to pH 2.8 acid mine water: predominant slime-producing bacteria in acid streamers.
    Dugan PR; MacMillan CB; Pfister RM
    J Bacteriol; 1970 Mar; 101(3):982-8. PubMed ID: 4908791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic heterotrophic bacteria indigenous to pH 2.8 acid mine water: microscopic examination of acid streamers.
    Dugan PR; MacMillan CB; Pfister RM
    J Bacteriol; 1970 Mar; 101(3):973-81. PubMed ID: 4191322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscopic streamer growths in acidic, metal-rich mine waters in north wales consist of novel and remarkably simple bacterial communities.
    Hallberg KB; Coupland K; Kimura S; Johnson DB
    Appl Environ Microbiol; 2006 Mar; 72(3):2022-30. PubMed ID: 16517651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems.
    Rowe OF; Sánchez-España J; Hallberg KB; Johnson DB
    Environ Microbiol; 2007 Jul; 9(7):1761-71. PubMed ID: 17564609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron.
    Johnson DB; Ghauri MA; Said MF
    Appl Environ Microbiol; 1992 May; 58(5):1423-8. PubMed ID: 1622207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of acidophilic heterotrophic iron-oxidizing bacterium from enrichment culture obtained from acid mine drainage treatment plant.
    Joe SJ; Suto K; Inoie C; Chida T
    J Biosci Bioeng; 2007 Aug; 104(2):117-23. PubMed ID: 17884656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell wall synthesis in yeast protoplasts.
    Necas O
    Bacteriol Rev; 1971 Jun; 35(2):149-70. PubMed ID: 4105161
    [No Abstract]   [Full Text] [Related]  

  • 8. Microorganisms in subterranean acidic waters within Europe's deepest metal mine.
    Kay CM; Haanela A; Johnson DB
    Res Microbiol; 2014 Nov; 165(9):705-12. PubMed ID: 25063488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage.
    Edwards KJ; Bond PL; Gihring TM; Banfield JF
    Science; 2000 Mar; 287(5459):1796-9. PubMed ID: 10710303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes during lysis of a psychorophilic marine bacterium.
    D'Aoust JY; Kushner DJ
    J Bacteriol; 1971 Nov; 108(2):916-27. PubMed ID: 4108473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of microorganisms in acid mine water. I. Influence of acid water on aerobic heterotrophs of a normal stream.
    Tuttle JH; Randles CI; Dugan PR
    J Bacteriol; 1968 May; 95(5):1495-503. PubMed ID: 5650063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Microbiological studies of the Wanda Lake (Antarctica)].
    Kriss AE; Mitskevich IN; Rozanova EP; Osnitskaia LK
    Mikrobiologiia; 1976; 45(6):1075-81. PubMed ID: 1012048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater.
    Tiago I; Pires C; Mendes V; Morais PV; da Costa MS; Veríssimo A
    Int J Syst Evol Microbiol; 2006 Nov; 56(Pt 11):2571-2574. PubMed ID: 17082392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy.
    Kimura S; Bryan CG; Hallberg KB; Johnson DB
    Environ Microbiol; 2011 Aug; 13(8):2092-104. PubMed ID: 21382147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial properties of diacetyl.
    Jay JM
    Appl Environ Microbiol; 1982 Sep; 44(3):525-32. PubMed ID: 7137998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations on the sheathed bacterium Haliscomenobacter hydrossis gen.n., sp.n., isolated from activated sludge.
    van Veen WL; van der Kooij D; Geuze EC; van der Vlies AW
    Antonie Van Leeuwenhoek; 1973; 39(2):207-16. PubMed ID: 4124107
    [No Abstract]   [Full Text] [Related]  

  • 18. The microbial associations in British fresh sausages.
    Dowdell MJ; Board RG
    J Appl Bacteriol; 1971 Jun; 34(2):317-37. PubMed ID: 4939267
    [No Abstract]   [Full Text] [Related]  

  • 19. The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods.
    Nielsen DS; Teniola OD; Ban-Koffi L; Owusu M; Andersson TS; Holzapfel WH
    Int J Food Microbiol; 2007 Mar; 114(2):168-86. PubMed ID: 17161485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas-vacuolated strains of Microcyclus aquaticus.
    Van Ert M; Staley JT
    J Bacteriol; 1971 Oct; 108(1):236-40. PubMed ID: 4941556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.