These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4909167)

  • 21. Vitamin B 12 and methionine synthesis in Escherichia coli.
    Dawes J; Foster MA
    Biochim Biophys Acta; 1971 Jun; 237(3):455-64. PubMed ID: 4940764
    [No Abstract]   [Full Text] [Related]  

  • 22. Purification and assay of cobalamin-dependent methionine synthase from Escherichia coli.
    Jarrett JT; Goulding CW; Fluhr K; Huang S; Matthews RG
    Methods Enzymol; 1997; 281():196-213. PubMed ID: 9250984
    [No Abstract]   [Full Text] [Related]  

  • 23. Comparison of cobalamin-independent and cobalamin-dependent methionine synthases from Escherichia coli: two solutions to the same chemical problem.
    González JC; Banerjee RV; Huang S; Sumner JS; Matthews RG
    Biochemistry; 1992 Jul; 31(26):6045-56. PubMed ID: 1339288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of one-carbon metabolism in a methionine-B12 auxotroph of Escherichia coli.
    Taylor RT; Dickerman H; Weissbach H
    Arch Biochem Biophys; 1966 Nov; 117(2):405-12. PubMed ID: 5339713
    [No Abstract]   [Full Text] [Related]  

  • 25. Spectrophotometric evidence for the formation of an Escherichia coli B B-12s methyltransferase.
    Taylor RT; Hanna ML
    Biochem Biophys Res Commun; 1970 Feb; 38(4):758-64. PubMed ID: 4910248
    [No Abstract]   [Full Text] [Related]  

  • 26. N5-methyltetrahydrofolate-homocysteine transmethylase. Partial purification and properties.
    Taylor RT; Weissbach H
    J Biol Chem; 1967 Apr; 242(7):1502-8. PubMed ID: 5337043
    [No Abstract]   [Full Text] [Related]  

  • 27. Interaction of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamin cofactor.
    Hoover DM; Jarrett JT; Sands RH; Dunham WR; Ludwig ML; Matthews RG
    Biochemistry; 1997 Jan; 36(1):127-38. PubMed ID: 8993326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ENZYMATIC SYNTHESIS OF THE METHYL GROUP OF METHIONINE. IX. TRANSMETHYLATION FROM S-ADENOSYLMETHIONINE AND 5-METHYLTETRAHYDROFOLATE TO 2-MERCAPTOETHANOL AND HOMOCYSTEINE.
    ROSENTHAL S; SMITH LC; BUCHANAN JM
    J Biol Chem; 1965 Feb; 240():836-43. PubMed ID: 14275143
    [No Abstract]   [Full Text] [Related]  

  • 29. Escherichia coli B N 5 -methyltetrahydrofolate-homocysteine cobalamin methyltransferase: gel-filtration behavior of apoenzyme and holoenzymes.
    Taylor RT
    Biochim Biophys Acta; 1971 Aug; 242(2):355-64. PubMed ID: 4946148
    [No Abstract]   [Full Text] [Related]  

  • 30. Escherichia coli B N5-methyltetrahydrofolate-homocysteine vitamin-B12 transmethylase: formation and photolability of a methylcobalamin enzyme.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1968 Jan; 123(1):109-26. PubMed ID: 4865805
    [No Abstract]   [Full Text] [Related]  

  • 31. Methylcobalamin as an intermediate in mammalian methionine biosynthesis.
    Burke GT; Mangum JH; Brodie JD
    Biochemistry; 1970 Oct; 9(22):4297-302. PubMed ID: 5472706
    [No Abstract]   [Full Text] [Related]  

  • 32. Methionine biosynthesis in Escherichia coli: induction and repression of methylmethionine(or adenosylmethionine):homocysteine methyltransferase.
    Balish E; Shapiro SK
    Arch Biochem Biophys; 1967 Mar; 119(1):62-8. PubMed ID: 4861151
    [No Abstract]   [Full Text] [Related]  

  • 33. Folic acid and the methylation of homocysteine by Bacillus subtilis.
    Salem AR; Pattison JR; Foster MA
    Biochem J; 1972 Feb; 126(4):993-1004. PubMed ID: 4627401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in protonation associated with substrate binding and Cob(I)alamin formation in cobalamin-dependent methionine synthase.
    Jarrett JT; Choi CY; Matthews RG
    Biochemistry; 1997 Dec; 36(50):15739-48. PubMed ID: 9398303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Escherichia coli B 5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: circular dichroism of the methylated and propylated holoenzymes.
    Taylor RT; Hanna ML
    Arch Biochem Biophys; 1973 Oct; 158(2):526-32. PubMed ID: 4592983
    [No Abstract]   [Full Text] [Related]  

  • 36. Interrelationship of adenosyl methionine and methyl-B12 in the biosynthesis of methionine.
    Kerwar SS; Mangum JH; Scrimgeour KG; Brodie JD; Huennekens FM
    Arch Biochem Biophys; 1966 Sep; 116(1):305-18. PubMed ID: 5336024
    [No Abstract]   [Full Text] [Related]  

  • 37. THE ROLE OF VITAMIN B12 IN METHYL TRANSFER TO HOMOCYSTEINE.
    BUCHANAN JM; ELFORD HL; LOUGHLIN RE; MCDOUGALL BM; ROSENTHAL S
    Ann N Y Acad Sci; 1964 Apr; 112():756-73. PubMed ID: 14167310
    [No Abstract]   [Full Text] [Related]  

  • 38. Nitrous oxide inactivation of cobalamin-dependent methionine synthase from Escherichia coli: characterization of the damage to the enzyme and prosthetic group.
    Drummond JT; Matthews RG
    Biochemistry; 1994 Mar; 33(12):3742-50. PubMed ID: 8142374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The vitamin B12-dependent methionine synthetase. The cycle of transmethylation.
    Rüdiger H
    Eur J Biochem; 1971 Jul; 21(2):264-8. PubMed ID: 4935202
    [No Abstract]   [Full Text] [Related]  

  • 40. The substrate specificity of 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase.
    Burton E; Selhub J; Sakami W
    Biochem J; 1969 Mar; 111(5):793-5. PubMed ID: 4891042
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.