These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 4909305)

  • 21. The association of ribosomal subunits of Escherichia coli. 2. Two types of association products differing in sensitivity to hydrostatic pressure generated during centrifugation.
    van Diggelen OP; Oostrom H; Bosch L
    Eur J Biochem; 1973 Nov; 39(2):511-23. PubMed ID: 4590452
    [No Abstract]   [Full Text] [Related]  

  • 22. Control of phage and host ribonucleic acid synthesis in phage T4 infected Escherichia coli.
    Ennis HL; Cohen PS
    Virology; 1968 Oct; 36(2):193-200. PubMed ID: 4879187
    [No Abstract]   [Full Text] [Related]  

  • 23. Small ribonucleic acids of Escherichia coli. II. Noncoordinate accumulation during stringent control.
    Ikemura T; Dahlberg JE
    J Biol Chem; 1973 Jul; 248(14):5033-41. PubMed ID: 4577762
    [No Abstract]   [Full Text] [Related]  

  • 24. Attachment of ribosomes to nascent messenger RNA in Escherichia coli.
    Das HK; Goldstein A; Lowney LI
    J Mol Biol; 1967 Mar; 24(2):231-45. PubMed ID: 5339872
    [No Abstract]   [Full Text] [Related]  

  • 25. Quinone induced stringent control. Accumulation of ppGpp and inhibition of RNA synthesis in stringent Escherichia coli by 5,8-dioxo-6-amino-7-chloroquinoline.
    Ogilvie A; Lämmerman M; Wiebauer K; Kersten W
    Biochim Biophys Acta; 1975 Jun; 395(2):136-45. PubMed ID: 1095072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the nature of transfer ribonucleic acid isolated from polyphenylalanyl transfer ribonucleic acid.
    Kuriki Y; Kaji A
    Biochemistry; 1969 Jul; 8(7):3029-36. PubMed ID: 4309131
    [No Abstract]   [Full Text] [Related]  

  • 27. Temperature-sensitive mutation in regulation of ribonucleic acid synthesis in Escherichia coli.
    Kuwano M; Endo H; Yamamoto M
    J Bacteriol; 1972 Dec; 112(3):1150-6. PubMed ID: 4565532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polysome turnover during amino acid starvation in Escherichia coli.
    Ron EZ
    J Bacteriol; 1971 Oct; 108(1):263-8. PubMed ID: 4941559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stringent response of RNA synthesis in E. coli produced by a temperature shift-up.
    Patterson D; Gillespie D
    Biochem Biophys Res Commun; 1971 Oct; 45(2):476-82. PubMed ID: 4946274
    [No Abstract]   [Full Text] [Related]  

  • 30. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli.
    Midgley JE; Gray WJ
    Biochem J; 1971 Apr; 122(2):149-59. PubMed ID: 4940606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and properties of two messenger-discriminating species of E. coli initiation factor 3.
    Lee-Huang S; Ochoa S
    Arch Biochem Biophys; 1973 May; 156(1):84-96. PubMed ID: 4581139
    [No Abstract]   [Full Text] [Related]  

  • 32. On the ribosomal subparticles formed in Escherichia coli BS-1 irradiated with ultraviolet light: formation and biological function of small particles.
    Matsuzaki K; Nozu K
    Biochim Biophys Acta; 1969 Jul; 186(1):85-98. PubMed ID: 4897216
    [No Abstract]   [Full Text] [Related]  

  • 33. Cellular macromolecule synthesis in Escherichia coli infected with bacteriophage MS2.
    Berzin V; Rosenthal G; Gren EJ
    Eur J Biochem; 1974 Jun; 45(1):233-42. PubMed ID: 4609303
    [No Abstract]   [Full Text] [Related]  

  • 34. The adaptive responses of Escherichia coli to a feast and famine existence.
    Koch AL
    Adv Microb Physiol; 1971; 6():147-217. PubMed ID: 4950180
    [No Abstract]   [Full Text] [Related]  

  • 35. The effect of chloramphenicol on the polysome formation of starved stringent Escherichia coli.
    Cameron HJ; Julian GR
    Biochim Biophys Acta; 1968 Dec; 169(2):373-80. PubMed ID: 4883322
    [No Abstract]   [Full Text] [Related]  

  • 36. Inhibition of the synthesis of 5-S ribosomal RNA in Escherichia coli by levallorphan.
    Roschenthaler R; Devynck MA; Fromageot P; Simon EJ
    Biochim Biophys Acta; 1969 Jun; 182(2):481-90. PubMed ID: 4894020
    [No Abstract]   [Full Text] [Related]  

  • 37. Incorporation of 5-azacytidine into nucleic acids of Escherichia coli.
    Paces V; Doskocil J; Sorm F
    Biochim Biophys Acta; 1968 Jul; 161(2):352-60. PubMed ID: 4875415
    [No Abstract]   [Full Text] [Related]  

  • 38. Synthesis of 5S ribosomal RNA in Escherichia coli after rifampicin treatment.
    Doolittle WF; Pace NR
    Nature; 1970 Oct; 228(5267):125-9. PubMed ID: 4918254
    [No Abstract]   [Full Text] [Related]  

  • 39. E. coli transfer RNA: fractionation by electrophoresis on polyacrylamide gel.
    Knight E; Nair CN
    Prep Biochem; 1971 Jan; 1(1):19-36. PubMed ID: 4946124
    [No Abstract]   [Full Text] [Related]  

  • 40. Polyacrylamide gel electrophoresis of nucleic acids synthesised during the early development of Xenopus laevis Daudin.
    Knowland JS
    Biochim Biophys Acta; 1970 Apr; 204(2):416-29. PubMed ID: 5441188
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.