These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4910305)

  • 21. FUNCTIONAL SITES OF THE PHENYLALANINE TRANSFER RNA OF ESCHERICHIA COLI.
    KAWADE Y; FUKUTOME H; HASHIZUME H; IMAHORI K
    J Mol Biol; 1965 Mar; 11():645-7. PubMed ID: 14267284
    [No Abstract]   [Full Text] [Related]  

  • 22. [Amino-acylation of Escherichia coli tRNA-1-Val by phenylalanine-tRNA synthetase of yeast].
    Taglang R; Waller JP; Befort N; Fasiolo F
    Eur J Biochem; 1970 Feb; 12(3):550-7. PubMed ID: 4314880
    [No Abstract]   [Full Text] [Related]  

  • 23. The incorporation of radiocarbon from ATP and amino acid into nucleic acids of Escherichia coli.
    MOLDAVE K
    Biochim Biophys Acta; 1960 Sep; 43():188-96. PubMed ID: 13771778
    [No Abstract]   [Full Text] [Related]  

  • 24. Cellular regulation of glutamine synthetase activity in Escherichia coli.
    Stadtman ER; Shapiro BM; Kingdon HS; Woolfolk CA; Hubbard JS
    Adv Enzyme Regul; 1968; 6():257-89. PubMed ID: 4889221
    [No Abstract]   [Full Text] [Related]  

  • 25. Sedimentation studies on aminoacyl-sRNA synthetase and activation of aminoacyl-sRNA transfer factor.
    Momose K; Kaji A
    Arch Biochem Biophys; 1965 Aug; 111(2):245-52. PubMed ID: 5324208
    [No Abstract]   [Full Text] [Related]  

  • 26. ATP-induced activation of the aminoacylation of tRNA by the isoleucyl-tRNA synthetase from Escherichia coli.
    Airas RK
    Eur J Biochem; 1988 Sep; 176(2):359-63. PubMed ID: 3046945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective inhibition of aminoacyl ribonucleic acid synthetases by aminoalkyl adenylates.
    Cassio D; Lemoine F; Waller JP; Sandrin E; Boissonnas RA
    Biochemistry; 1967 Mar; 6(3):827-36. PubMed ID: 4290596
    [No Abstract]   [Full Text] [Related]  

  • 28. The mechanism of reaction of methionyl-tRNA synthetase from Escherichia coli. Interaction of the enzyme with ligands of the amino-acid-activation reaction.
    Blanquet S; Fayat G; Waller JP; Iwatsubo M
    Eur J Biochem; 1972 Jan; 24(3):461-9. PubMed ID: 4621706
    [No Abstract]   [Full Text] [Related]  

  • 29. The early change in E. coli leucine tRNA after infection with bacteriophage T2.
    Waters LC; Novelli GD
    Biochem Biophys Res Commun; 1968 Sep; 32(6):971-6. PubMed ID: 4881329
    [No Abstract]   [Full Text] [Related]  

  • 30. Reactions sequence of leucine activation catalysed by leucyl-RNA synthetase. 2. Formation of complexes between the enzyme and substrates.
    Rouget P; Chapeville F
    Eur J Biochem; 1968 Apr; 4(3):310-4. PubMed ID: 4871337
    [No Abstract]   [Full Text] [Related]  

  • 31. Chemical studies on methionyl-tRNA synthetase from Escherichia coli.
    Bruton CJ; Hartley BS
    J Mol Biol; 1970 Sep; 52(2):165-78. PubMed ID: 4922213
    [No Abstract]   [Full Text] [Related]  

  • 32. Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase.
    Zamecnik PC; Stephenson ML; Janeway CM; Randerath K
    Biochem Biophys Res Commun; 1966 Jul; 24(1):91-7. PubMed ID: 5338216
    [No Abstract]   [Full Text] [Related]  

  • 33. Inability of sRNA derived from peptidyl sRNA to accept amino acids.
    Kuriki Y; Kaji A
    Biochem Biophys Res Commun; 1967 Jan; 26(1):95-101. PubMed ID: 5339940
    [No Abstract]   [Full Text] [Related]  

  • 34. Studies on polynucleotides. LXXXVI. Enzymic hydrolysis of N-acylaminoacyl-transfer RNA.
    Kössel H; RajBhandary UL
    J Mol Biol; 1968 Aug; 35(3):539-60. PubMed ID: 4877004
    [No Abstract]   [Full Text] [Related]  

  • 35. Kinetic techniques for the investigation of amino acid: tRNA ligases (aminoacyl-tRNA synthetases, amino acid activating enzymes).
    Eigner EA; Loftfield RB
    Methods Enzymol; 1974; 29():601-19. PubMed ID: 4368855
    [No Abstract]   [Full Text] [Related]  

  • 36. Role of sulfhydryl groups in activating enzymes. Properties of Escherichia coli lysine-transfer ribonucleic acid synthetase.
    Stern R; DeLuca M; Mehler AH; McElroy WD
    Biochemistry; 1966 Jan; 5(1):126-30. PubMed ID: 5328550
    [No Abstract]   [Full Text] [Related]  

  • 37. The specificity of enzymic reactions. Aminoacyl-soluble RNA ligases.
    Loftfield RB; Eigner EA
    Biochim Biophys Acta; 1966 Dec; 130(2):426-48. PubMed ID: 4291467
    [No Abstract]   [Full Text] [Related]  

  • 38. The mechanism of amino acid control of guanylate and adenylate biosynthesis.
    Gallant J; Irr J; Cashel M
    J Biol Chem; 1971 Sep; 246(18):5812-6. PubMed ID: 4938039
    [No Abstract]   [Full Text] [Related]  

  • 39. [The effect of several glutamine antimetabolites on guaninemonophosphate synthetase of E. coli].
    Iarovaia LM; Mardashev SR; Debov SS
    Vopr Med Khim; 1967; 13(2):176-80. PubMed ID: 4876547
    [No Abstract]   [Full Text] [Related]  

  • 40. Requirement of different sulfhydryl groups in the activation and transfer reactions of isoleucyl transfer ribonucleic acid synthetase.
    Kuo T; DeLuca M
    Biochemistry; 1969 Dec; 8(12):4762-8. PubMed ID: 4312454
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.