These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 4911348)

  • 21. Developmental sequence in the origin of descending spinal pathways. Studies using retrograde transport techniques in the North American opossum (Didelphis virginiana).
    Cabana T; Martin GF
    Brain Res; 1984 Aug; 317(2):247-63. PubMed ID: 6478250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative aspects of neuron arrangement in the specific thalamic nuclei.
    Tömböl T; Ungváry G; Hajdu F; Madarász M; Somogyi G
    Acta Morphol Acad Sci Hung; 1969; 17(3):299-313. PubMed ID: 5379448
    [No Abstract]   [Full Text] [Related]  

  • 23. Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions.
    Altman J; Das GD
    J Comp Neurol; 1966 Mar; 126(3):337-89. PubMed ID: 5937257
    [No Abstract]   [Full Text] [Related]  

  • 24. Early development of the inferior olivary complex in pouch young opossums. I. A light microscopic study.
    Maley BE; King JS
    J Comp Neurol; 1980 Dec; 194(4):721-39. PubMed ID: 7204640
    [No Abstract]   [Full Text] [Related]  

  • 25. Galanin-like immunoreactivity in the adult and developing Brazilian opossum brain.
    Elmquist JK; Fox CA; Ross LR; Jacobson CD
    Brain Res Dev Brain Res; 1992 Jun; 67(2):161-79. PubMed ID: 1380900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. General observations on the growth and development of the young pouch opossum, Didelphis virginiana.
    Cutts JH; Krause WJ; Leeson CR
    Biol Neonate; 1978; 33(5-6):264-72. PubMed ID: 567497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The fine structure of neurons and synapses of the habenula of the cat with special reference to subjunctional bodies.
    Milhaud M; Pappas GD
    Brain Res; 1966 Dec; 3(2):158-73. PubMed ID: 4165893
    [No Abstract]   [Full Text] [Related]  

  • 28. The development of commissural connections of somatic motor-sensory areas of neocortex in the North American opossum.
    Cabana T; Martin GF
    Anat Embryol (Berl); 1985; 171(1):121-8. PubMed ID: 3838629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Branching patterns of individual sympathetic neurons in culture.
    Bray D
    J Cell Biol; 1973 Mar; 56(3):702-12. PubMed ID: 4687915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dendrodendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat.
    Morest DK
    Z Anat Entwicklungsgesch; 1971; 133(2):216-46. PubMed ID: 4929220
    [No Abstract]   [Full Text] [Related]  

  • 31. Structure of the piriform cortex of the opossum. I. Description of neuron types with Golgi methods.
    Haberly LB
    J Comp Neurol; 1983 Jan; 213(2):163-87. PubMed ID: 6841668
    [No Abstract]   [Full Text] [Related]  

  • 32. Effect of emotional stress in pregnant rats on brain development of their progeny.
    Ryzhavskii BY; Sokolova TV; Fel'dsherov YI; Uchakina RV; Sapozhnikov YA; Malysheva EN
    Bull Exp Biol Med; 2001 Aug; 132(2):737-40. PubMed ID: 11713552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ontogeny of arginine vasopressin-like immunoreactivity in the Brazilian opossum brain.
    Iqbal J; Jacobson CD
    Brain Res Dev Brain Res; 1995 Oct; 89(1):11-32. PubMed ID: 8575082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of respiration in the isolated central nervous system of the neonatal opossum, Monodelphis domestica.
    Eugenín J; Nicholls JG
    Brain Res Bull; 2000 Nov; 53(5):605-13. PubMed ID: 11165796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite.
    Baas PW; Deitch JS; Black MM; Banker GA
    Proc Natl Acad Sci U S A; 1988 Nov; 85(21):8335-9. PubMed ID: 3054884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for a temporal factor in the occupation of available synaptic sites during the development of the dentate gyrus.
    Gottlieb DI; Cowan WM
    Brain Res; 1972 Jun; 41(2):452-6. PubMed ID: 5038336
    [No Abstract]   [Full Text] [Related]  

  • 37. Ontogeny of oxytocin-like immunoreactivity in the Brazilian opossum brain.
    Iqbal J; Jacobson CD
    Brain Res Dev Brain Res; 1995 Dec; 90(1-2):1-16. PubMed ID: 8719325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of spinal cord in the isolated CNS of a neonatal mammal (the opossum Monodelphis domestica) maintained in longterm culture.
    Møllgård K; Balslev Y; Janas MS; Treherne JM; Saunders NR; Nichols JG
    J Neurocytol; 1994 Mar; 23(3):151-65. PubMed ID: 8006676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb.
    Altman J
    J Comp Neurol; 1969 Dec; 137(4):433-57. PubMed ID: 5361244
    [No Abstract]   [Full Text] [Related]  

  • 40. Ultrastructure of growth cones in the cerebellar cortex of the neonatal rat and cat.
    Kawana E; Sandri C; Akert K
    Z Zellforsch Mikrosk Anat; 1971; 115(2):284-98. PubMed ID: 4102325
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.