These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4911549)

  • 1. Changes in resistance to radiation and heat during sporulation and germination of Clostridium botulinum 33A.
    Durban E; Goodnow R; Grecz N
    J Bacteriol; 1970 May; 102(2):590-2. PubMed ID: 4911549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the effect of ionizing radiation on resistance, germination, and toxin synthesis of Clostridium botulinum spores, types A, B, and E. COO-1095-3.
    Graikoski JT; Kempe LL
    COO Rep; 1966 Jan; ():1-100. PubMed ID: 4312998
    [No Abstract]   [Full Text] [Related]  

  • 3. Resistance of spores of Clostridium botulinum 33A to combinations of ultraviolet and gamma rays.
    Durban E; Grecz N
    Appl Microbiol; 1969 Jul; 18(1):44-50. PubMed ID: 4896102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of irradiation temperature in the range--196 to 95C on the resistance of spores of Clostridium botulinum 33A in cooked beef.
    Grecz N; Walker AA; Anellis A; Berkowitz D
    Can J Microbiol; 1971 Feb; 17(2):135-42. PubMed ID: 4926793
    [No Abstract]   [Full Text] [Related]  

  • 5. Toxicity of spores of Clostridium botulinum strain 33A in irradiated ground beef.
    Fernandez E; Tang T; Grecz N
    J Gen Microbiol; 1969 Apr; 56(1):15-21. PubMed ID: 4891925
    [No Abstract]   [Full Text] [Related]  

  • 6. A study of the effect of ionizing radiation on resistance, germination, and toxin synthesis of Clostridium botulinum spores, types A, B, and E. TID-25179.
    Graikoski JT; Kempe LL
    TID Rep; 1966 Jan; ():1-47. PubMed ID: 4905220
    [No Abstract]   [Full Text] [Related]  

  • 7. Growth characteristics of type E Clostridium botulinum in the temperature range 34 to 50 degrees F. TID-24779.
    TID Rep; 1966 Jan; ():117. PubMed ID: 4905218
    [No Abstract]   [Full Text] [Related]  

  • 8. The nature of heat resistant toxin in spores of Clostridium botulinum.
    Grecz N; Lin CA; Tang T; So WL; Sehgal LR
    Jpn J Microbiol; 1967 Dec; 11(4):384-94. PubMed ID: 4872435
    [No Abstract]   [Full Text] [Related]  

  • 9. A study of the effect of ionizing radiation on resistance, germination, and toxin synthesis of Clostridium botulinum spores, types A, B, and E. TID-25178.
    Graikoski JT; Kempe LL
    TID Rep; 1966 Jan; ():1-29. PubMed ID: 4905219
    [No Abstract]   [Full Text] [Related]  

  • 10. The effects of gamma-radiation and heat on the germination of spores of Clostridium botulinum type E.
    Ando Y
    J Radiat Res; 1971 Mar; 12(1):29-36. PubMed ID: 4934429
    [No Abstract]   [Full Text] [Related]  

  • 11. Growth and toxin production of Clostridium botulinum types E, nonproteolytic B, and F in nonirradiated and irradiated fisheries products in the temperature range of 36 degrees to 72 degrees F. TID-24881.
    Eklund MW; Poysky FT; Wieler DI
    TID Rep; 1966 Jan; ():1-86. PubMed ID: 4905224
    [No Abstract]   [Full Text] [Related]  

  • 12. Physiological studies on Clostridium botulinum, type F. TID-24780.
    Walls NW
    TID Rep; 1966 Jan; ():1-75. PubMed ID: 4905223
    [No Abstract]   [Full Text] [Related]  

  • 13. Radiation survival of bacterial spores in neutral and acid ice.
    Grecz N; Upadhyay J
    Can J Microbiol; 1970 Nov; 16(11):1045-9. PubMed ID: 4923479
    [No Abstract]   [Full Text] [Related]  

  • 14. Production of types A and B spores of Clostridium botulinum by the biphasic method: effect on spore population, radiation resistance, and toxigenicity.
    Anellis A; Berkowitz D; Kemper D; Rowley DB
    Appl Microbiol; 1972 Apr; 23(4):734-9. PubMed ID: 4111814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct enzymatic repair of deoxyribonucleic acid single-strand breaks in dormant spores.
    Durban E; Grecz N; Farkas J
    J Bacteriol; 1974 Apr; 118(1):129-38. PubMed ID: 4206867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PHYSIOLOGY OF THE SPORULATION PROCESS IN CLOSTRIDIUM BOTULINUM. I. CORRELATION OF MORPHOLOGICAL CHANGES WITH CATABOLIC ACTIVITIES, SYNTHESIS OF DIPICOLINIC ACID, AND DEVELOPMENT OF HEAT RESISTANCE.
    DAY LE; COSTILOW RN
    J Bacteriol; 1964 Sep; 88(3):690-4. PubMed ID: 14208508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects on growth and toxin production of exposure of spores of Clostridium botulinum type F to sublethal doses of gamma irradiation.
    Williams-Walls NJ
    Appl Microbiol; 1969 Jan; 17(1):128-34. PubMed ID: 4886855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting the germination of spores of Clostridium botulinum type E.
    Ando Y; Iida H
    Jpn J Microbiol; 1970 Sep; 14(5):361-70. PubMed ID: 4919766
    [No Abstract]   [Full Text] [Related]  

  • 19. Photoprotection by dipicolinate against inactivation of bacterial spores with ultraviolet light.
    Grecz N; Tang T; Frank HA
    J Bacteriol; 1973 Feb; 113(2):1058-60. PubMed ID: 4632312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symposium on bacterial spores: VII. Recovering spores damaged by heat, ionizing radiations or ethylene oxide.
    Roberts TA
    J Appl Bacteriol; 1970 Mar; 33(1):74-94. PubMed ID: 5447476
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.