These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 4911954)
1. Studies of the efficiency of oxidative phosphorylation in intact Escherichia coli B. Hempfling WP Biochim Biophys Acta; 1970; 205(2):169-82. PubMed ID: 4911954 [No Abstract] [Full Text] [Related]
2. Release of glucose repression of oxidative phosphorylation in Escherichia coli B by cyclic adenosine 3',5'-monophosphate. Hempfling WP; Beeman DK Biochem Biophys Res Commun; 1971 Nov; 45(4):924-30. PubMed ID: 4399015 [No Abstract] [Full Text] [Related]
3. Repression of oxidative phosphorylation in Escherichia coli B by growth in glucose and other carbohydrates. Hempfling WP Biochem Biophys Res Commun; 1970 Oct; 41(1):9-15. PubMed ID: 4918018 [No Abstract] [Full Text] [Related]
4. Temperature-induced alterations in 8-anilino-1-naphthalenesulfonate fluorescences with membranes from Mycobacterium phlei. Aithal HN; Kalra VK; Brodie AF Biochemistry; 1974 Jan; 13(1):171-8. PubMed ID: 4586935 [No Abstract] [Full Text] [Related]
5. Azide inhibition of mitochondrial electron transport. I. The aerobic steady state of succinate oxidation. Wilson DF; Chance B Biochim Biophys Acta; 1967 May; 131(3):421-30. PubMed ID: 4166781 [No Abstract] [Full Text] [Related]
6. The interactions of coupling ATPases with nucleotides. Harris DA Biochim Biophys Acta; 1978 Mar; 463(3-4):245-73. PubMed ID: 147104 [No Abstract] [Full Text] [Related]
7. Oxidative phosphorylation in fractionated bacterial systems. 43. Coupling factors associated with the NAD+ linked electron transport pathway. Bogin E; Higashi T; Brodie AF Arch Biochem Biophys; 1970 Feb; 136(2):337-51. PubMed ID: 4314107 [No Abstract] [Full Text] [Related]
8. Oxidative phosphorylation in yeast. IX. Modification of the mitochondrial adenine nucleotide translocation system in the oxidative phosphorylation-deficient mutant op 1 . Kolarov J; Subík J; Kovac L Biochim Biophys Acta; 1972 Jun; 267(3):465-78. PubMed ID: 4558495 [No Abstract] [Full Text] [Related]
9. Differences between the phosphorylation potentials of adenosine triphosphate inside and outside the mitochondria. Heldt HW Biochem J; 1970 Feb; 116(4):15P. PubMed ID: 4244888 [No Abstract] [Full Text] [Related]
10. Oxidative phosphorylation coupled with nitrate respiration. 3. Coupling factors and mechanism of oxidative phosphorylation. Ota A J Biochem; 1965 Aug; 58(2):137-44. PubMed ID: 5323300 [No Abstract] [Full Text] [Related]
11. Studies on energy-linked reactions. Energy-linked reduction of oxidized nicotinamide-adenine dinucleotide by succinate in Escherichia coli. Sweetman AJ; Griffiths DE Biochem J; 1971 Jan; 121(1):117-24. PubMed ID: 4107303 [TBL] [Abstract][Full Text] [Related]
12. Free--SH variations during ATP synthesis by oxidative phosphorylation in heart muscle mitochondria. Sabadie-Pialoux N; Gautheron D Biochim Biophys Acta; 1971 Apr; 234(1):9-15. PubMed ID: 5560366 [No Abstract] [Full Text] [Related]
13. The effect of anaerobiosis and uncouplers on the stimulation of -galactosidase synthesis by cyclic 3',5'-adenosine monophosphate in Escherichia coli. Aboud M; Burger M J Gen Microbiol; 1972 Jul; 71(2):311-8. PubMed ID: 4340232 [No Abstract] [Full Text] [Related]
14. Regulation of dinitrogen fixation in intact Azotobacter vinelandii. Haaker H; de Kok A; Veeger C Biochim Biophys Acta; 1974 Sep; 357(3):344-57. PubMed ID: 4153464 [No Abstract] [Full Text] [Related]
15. The influence of pH on the inhibition of oxidative phosphorylation and electron transport by triethyltin. Coleman JO; Palmer JM Biochim Biophys Acta; 1971 Sep; 245(2):313-20. PubMed ID: 4258594 [No Abstract] [Full Text] [Related]
16. Metabolic control reactions of the intact urinary bladder of the toad. Canessa-Fischer M; Davis RP J Cell Physiol; 1966 Apr; 67(2):345-54. PubMed ID: 5924100 [No Abstract] [Full Text] [Related]
17. Oxidative phosphorylation coupled with nitrate respiration. IV. Replacement of soluble fraction from Escherichia coli, Pseudomonas aeruginosa and Mycobacterium avium. Ota A Microbios; 1980; 27(109 110):133-44. PubMed ID: 6777636 [TBL] [Abstract][Full Text] [Related]