These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 4914567)

  • 41. Promoter-like mutant with increased expression of the glycerol kinase operon of Escherichia coli.
    Berman-Kurtz M; Lin EC; Richey DP
    J Bacteriol; 1971 Jun; 106(3):724-31. PubMed ID: 4934061
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport.
    Adhya S; Echols H
    J Bacteriol; 1966 Sep; 92(3):601-8. PubMed ID: 5332079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of the lac regulatory genes in catabolite repression in Escherichia coli.
    Palmer J; Moses V
    Biochem J; 1967 May; 103(2):358-66. PubMed ID: 5340365
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Properties and mode of action of a bactericidal compound (=methylglyoxal) produced by a mutant of Escherichia coli.
    Krymkiewicz N; Diéguez E; Rekarte UD; Zwaig N
    J Bacteriol; 1971 Dec; 108(3):1338-47. PubMed ID: 4945198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition by 3-deoxy-3-fluoro-D-glucose of the utilization of lactose and other carbon sources by Escherichia coli.
    Miles RJ; Pirt SJ
    J Gen Microbiol; 1973 Jun; 76(2):305-18. PubMed ID: 4579128
    [No Abstract]   [Full Text] [Related]  

  • 46. Changes in macromolecular synthesis and nucleoside triphosphate levels during glycerol-induced growth stasis of Escherichia coli.
    Hennen PE; Carter HB; Nunn WD
    J Bacteriol; 1978 Dec; 136(3):929-35. PubMed ID: 363698
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of an Escherichia coli mutant which utilizes glycerol in the absence of cyclic adenosine monophosphate.
    Fraser AD; Yamazaki H
    Can J Microbiol; 1980 Mar; 26(3):393-6. PubMed ID: 6250693
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Role of transgalactosidations in induction of the lactose operon in Escherichia coli].
    Burstein C
    Bull Soc Chim Biol (Paris); 1965; 47(10):1901-4. PubMed ID: 5327277
    [No Abstract]   [Full Text] [Related]  

  • 49. Regulation of phospholipid synthesis in Escherichia coli by guanosine tetraphosphate.
    Merlie JP; Pizer LI
    J Bacteriol; 1973 Oct; 116(1):355-66. PubMed ID: 4583220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beta-lactam-induced bacteriolysis of amino acid-deprived Escherichia coli is dependent on phospholipid synthesis.
    Rodionov DG; Pisabarro AG; de Pedro MA; Kusser W; Ishiguro EE
    J Bacteriol; 1995 Feb; 177(4):992-7. PubMed ID: 7860611
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A convenient synthesis of (2R)-glyceryl-beta-D-galactopyranoside. A substrate for beta-galactosidase, the lactose repressor, the galactose-binding protein, and the beta-methylgalactoside transport system.
    Silhavy TJ; Boos W
    J Biol Chem; 1973 Sep; 248(18):6571-4. PubMed ID: 4581106
    [No Abstract]   [Full Text] [Related]  

  • 52. Theophylline inhibits the transcription of the lac operon in Escherichia coli.
    Schlammadinger J; Szabó G; Pólya L
    Acta Microbiol Acad Sci Hung; 1972; 19(1):43-50. PubMed ID: 4346731
    [No Abstract]   [Full Text] [Related]  

  • 53. Effect of trimethoprim on macromolecular synthesis in Escherichia coli.
    Miovic M; Pizer LI
    J Bacteriol; 1971 Jun; 106(3):856-62. PubMed ID: 4254117
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inducible and constitutive -galactosidase formation in cells recovering from protein synthesis inhibition.
    Soreq H; Kaplan R
    J Bacteriol; 1971 Dec; 108(3):1147-53. PubMed ID: 4945186
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of streptomycin and cyclic adenosine 5'-monophosphate in the isolation of mutants deficient in CAP protein.
    Artman M; Werthamer S
    J Bacteriol; 1974 Oct; 120(1):542-4. PubMed ID: 4371357
    [TBL] [Abstract][Full Text] [Related]  

  • 56. BETA-GALACTOSIDASE SYNTHESIS BY CELL-FREE PREPARATIONS FROM A LACTOSE-NONFERMENTING MUTANT DEPENDENT UPON DEOXYRIBONUCLEIC ACID FROM A LACTOSE-FERMENTING STRAIN OF ESCHERICHIA COLI.
    BITO Y
    Exp Cell Res; 1965 Feb; 37():338-42. PubMed ID: 14298946
    [No Abstract]   [Full Text] [Related]  

  • 57. Lac repressor can be fused to beta-galactosidase.
    Müller-Hill B; Kania J
    Nature; 1974 Jun; 249(457):561-3. PubMed ID: 4599764
    [No Abstract]   [Full Text] [Related]  

  • 58. Regulation of phospholipid biosynthesis in Escherichia coli. Cloning of the structural gene for the biosynthetic sn-glycerol-3-phosphate dehydrogenase.
    Clark D; Lightner V; Edgar R; Modrich P; Cronan JE; Bell RM
    J Biol Chem; 1980 Jan; 255(2):714-7. PubMed ID: 6985897
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characteristics of a binding protein-dependent transport system for sn-glycerol-3-phosphate in Escherichia coli that is part of the pho regulon.
    Schweizer H; Argast M; Boos W
    J Bacteriol; 1982 Jun; 150(3):1154-63. PubMed ID: 7042685
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of shift-down and growth inhibition on phospholipid metabolism of Escherichia coli.
    Ballesta JP; Schaechter M
    J Bacteriol; 1971 Jul; 107(1):251-8. PubMed ID: 4327511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.