These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 4914848)

  • 21. Biosynthesis of branched-chain amino acids in yeast: regulation of synthesis of the enzymes of isoleucine and valine biosynthesis.
    Bussey H; Umbarger HE
    J Bacteriol; 1969 May; 98(2):623-8. PubMed ID: 5784215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced maximal levels of derepression of the isoleucine-valine and leucine enzymes in hisT mutants of Salmonella typhimurium.
    Bresalier RS; Rizzino AA; Freundlich M
    Nature; 1975 Jan; 253(5489):279-80. PubMed ID: 1089896
    [No Abstract]   [Full Text] [Related]  

  • 23. Salmonella typhimurium mutants defective in acetohydroxy acid synthases I and II.
    Shaw KJ; Berg CM; Sobol TJ
    J Bacteriol; 1980 Mar; 141(3):1258-63. PubMed ID: 6245063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of isoleucine, valine and leucine biosynthesis. V. Dual effect of alpha-aminobutyric acid on repression and endproduct inhibition in Escherichia coli.
    Freundlich M; Clarke LP
    Biochim Biophys Acta; 1968 Dec; 170(2):271-81. PubMed ID: 4884572
    [No Abstract]   [Full Text] [Related]  

  • 25. Evidence for an altered operator specificity: catabolite repression control of the leucine operon in Salmonella typhimurium.
    Friedman SB; Margolin P
    J Bacteriol; 1968 Jun; 95(6):2263-9. PubMed ID: 4876135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The effect of the feedback inhibition of threonine deaminase on valine-leucine biosynthesis (author's transl)].
    Baumgarten J
    Arch Microbiol; 1974; 101(3):221-32. PubMed ID: 4441219
    [No Abstract]   [Full Text] [Related]  

  • 27. Regulation of isoleucine and valine biosynthesis in Salmonella typhimurium: the effect of hisU on repression control.
    Davidson JP; Williams LS
    J Mol Biol; 1979 Jan; 127(2):229-35. PubMed ID: 372538
    [No Abstract]   [Full Text] [Related]  

  • 28. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant.
    Berg CM; Whalen WA; Archambault LB
    J Bacteriol; 1983 Sep; 155(3):1009-14. PubMed ID: 6309735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strains of Bacillus subtilis synthesizing elevated levels of isoleucine-valine biosynthetic enzymes.
    Chapman LF; Hull CJ
    Mol Gen Genet; 1974 Mar; 129(2):87-95. PubMed ID: 4208881
    [No Abstract]   [Full Text] [Related]  

  • 30. Biochemical and genetic analysis of isoleucine and valine biosynthesis in Staphylococcus aureus.
    Smith CD; Pattee PA
    J Bacteriol; 1967 Jun; 93(6):1832-8. PubMed ID: 6025302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of isoleucine, valine, or leucine starvation on the potential for formation of the branched-chain amino acid biosynthetic enzymes.
    Wasmuth JJ; Umbarger HE
    J Bacteriol; 1973 Nov; 116(2):548-61. PubMed ID: 4200849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acetohydroxy acid synthase I is required for isoleucine and valine biosynthesis by Salmonella typhimurium LT2 during growth on acetate or long-chain fatty acids.
    Dailey FE; Cronan JE; Maloy SR
    J Bacteriol; 1987 Feb; 169(2):917-9. PubMed ID: 3542980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of the leu-3 cistron in the regulation of the synthesis of isoleucine and valine biosynthetic enzymes of Neurospora.
    Olshan AR; Gross SR
    J Bacteriol; 1974 May; 118(2):374-84. PubMed ID: 4828304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence that the majority of leucine transfer ribonucleic acid is not involved in repression in Salmonella typhimurium.
    Freundlich M; Trela J; Peng W
    J Bacteriol; 1971 Nov; 108(2):951-3. PubMed ID: 4942773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutants of Salmonella typhimurium defective in transport of branched-chain amino acids.
    Kiritani K
    J Bacteriol; 1974 Dec; 120(3):1093-101. PubMed ID: 4373435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new locus (leuK) affecting the regulation of branched-chain amino acid, histidine, and tryptophan biosynthetic enzymes.
    Brown CS; West R; Hilderman RH; Bayliss FT; Klines EL
    J Bacteriol; 1978 Aug; 135(2):542-50. PubMed ID: 355232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acetohydroxy acid synthase and threonine deaminase activities, and the biosynthesis of isoleucine-leucine-valine in Streptococcus bovis.
    Basso AL; Ricca E; Caruso C; Ferrara L; De Felice M
    Res Microbiol; 1993 Sep; 144(7):539-45. PubMed ID: 8310179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two mutations in the first gene of the histidine operon of Salmonella typhimurium affecting control.
    Rothman-Denes L; Martin RG
    J Bacteriol; 1971 Apr; 106(1):227-37. PubMed ID: 4928009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetohydroxy acid synthase isoenzymes of Escherichia coli K12 and Salmonella typhimurium.
    de Felice M; Lago CT; Squires CH; Calvo JM
    Ann Microbiol (Paris); 1982; 133(2):251-6. PubMed ID: 6805381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repression and inhibition of transport systems for branched-chain amino acids in Salmonella typhimurium.
    Kiritani K; Ohnishi K
    J Bacteriol; 1977 Feb; 129(2):589-98. PubMed ID: 320186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.