These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 4915325)
1. The regulation of enzyme activity and allosteric transition. Whitehead E Prog Biophys Mol Biol; 1970; 21():321-97. PubMed ID: 4915325 [No Abstract] [Full Text] [Related]
2. A model for nucleotide regulation of aspartate transcarbamylase. London RE; Schmidt PG Biochemistry; 1972 Aug; 11(16):3136-42. PubMed ID: 4557519 [No Abstract] [Full Text] [Related]
4. An equilibrium binding study of the interaction of aspartate transcarbamylase with cytidine 5'-triphosphate and adenosine 5'-triphosphate. Matsumoto S; Hammes GG Biochemistry; 1973 Mar; 12(7):1388-94. PubMed ID: 4572358 [No Abstract] [Full Text] [Related]
5. Relaxation spectra of aspartate transcarbamylase. I. Interaction of 5-bromocytidine triphosphate with native enzyme and regulatory subunit. Eckfeldt J; Hammes GG; Mohr SC; Wu CW Biochemistry; 1970 Aug; 9(17):3353-62. PubMed ID: 4941833 [No Abstract] [Full Text] [Related]
6. Transients and cooperativity. A slow transition model for relating transients and cooperative kinetics of enzymes. Ainslie GR; Shill JP; Neet KE J Biol Chem; 1972 Nov; 247(21):7088-96. PubMed ID: 4343169 [No Abstract] [Full Text] [Related]
7. Relaxation spectra of aspartate transcarbamylase. Interaction of the native enzyme with carbamyl phosphate. Hammes GG; Wu CW Biochemistry; 1971 May; 10(11):2150-6. PubMed ID: 4935107 [No Abstract] [Full Text] [Related]
8. Interaction of aspartate transcarbamylase with 5-bromocytidine 5'-tri-, di-, and monophosphates. Tondre C; Hammes GG Biochemistry; 1974 Jul; 13(15):3131-6. PubMed ID: 4601429 [No Abstract] [Full Text] [Related]
9. Studies on analogs of isosteric and allosteric ligands of deoxycytidylate aminohydrolase. Rossi M; Momparler RL; Nucci R; Scarano E Biochemistry; 1970 Jun; 9(12):2539-43. PubMed ID: 5423270 [No Abstract] [Full Text] [Related]
10. Role of an allosteric effector. Guanosine triphosphate activation in cytosine triphosphate synthetase. Levitzki A; Koshland DE Biochemistry; 1972 Jan; 11(2):241-6. PubMed ID: 4550559 [No Abstract] [Full Text] [Related]
12. Pseudoconservative transition: a two-state model for the co-operative behavior of oligomeric proteins. Viratelle OM; Seydoux FJ J Mol Biol; 1975 Feb; 92(2):193-205. PubMed ID: 167173 [No Abstract] [Full Text] [Related]
13. Models for cooperative effects in proteins containing subunits. Effects of two interacting ligands. Kirtley ME; Koshland DE J Biol Chem; 1967 Sep; 242(18):4192-205. PubMed ID: 4294047 [No Abstract] [Full Text] [Related]
14. Preconditioning: an obligatory step in the biosynthesis of oligomeric enzymes and its promotion by allosteric ligands. Paulus H; Alpers JB Enzyme; 1971; 12(4):385-401. PubMed ID: 4256945 [No Abstract] [Full Text] [Related]
15. Thermodynamic analysis of D-glyceraldehyde-3-phosphate dehydrogenase action. Tro TQ; Keleti T Acta Biochim Biophys Acad Sci Hung; 1974; 9(4):281-94. PubMed ID: 4476169 [No Abstract] [Full Text] [Related]
16. Relaxation spectra of aspartate transcarbamylase. Interaction of the native enzyme with cytidine 5'-triphosphate. Harrison LW; Hammes GG Biochemistry; 1973 Mar; 12(7):1395-400. PubMed ID: 4572359 [No Abstract] [Full Text] [Related]
17. Interaction of the substrate phosphate substituent with glyceraldehyde-3-phosphate dehydrogenase. Kanchuger MS; Leong PM; Byers LD Biochemistry; 1979 Oct; 18(20):4373-9. PubMed ID: 385052 [No Abstract] [Full Text] [Related]
18. Relaxation spectra of aspartate transcarbamylase. Interaction of the native enzyme with an adenosine 5'-triphosphate analog. Wu CW; Hammes GG Biochemistry; 1973 Mar; 12(7):1400-8. PubMed ID: 4572360 [No Abstract] [Full Text] [Related]
19. The determination of thermodynamic allosteric parameters of an enzyme undergoing steady-state turnover. Reinhart GD Arch Biochem Biophys; 1983 Jul; 224(1):389-401. PubMed ID: 6870263 [TBL] [Abstract][Full Text] [Related]