These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 4917194)

  • 1. Occurrence of purple sulfur bacteria in a sewage treatment lagoon.
    Holm HW; Vennes JW
    Appl Microbiol; 1970 Jun; 19(6):988-96. PubMed ID: 4917194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur metabolism in Thiorhodaceae. IV. Assimilatory reduction of sulfate by Thiocapsa floridana and Chromatium species.
    Thiele HH
    Antonie Van Leeuwenhoek; 1968; 34(3):341-9. PubMed ID: 5305787
    [No Abstract]   [Full Text] [Related]  

  • 3. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats.
    Jorgensen BB; Des Marais DJ
    FEMS Microbiol Ecol; 1986; 38():179-86. PubMed ID: 11542103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotin production and utilization in a sewage treatment lagoon.
    Fillipi GM; Vennes JW
    Appl Microbiol; 1971 Jul; 22(1):49-54. PubMed ID: 4939123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unexpected extracellular and intracellular sulfur species during growth of Allochromatium vinosum with reduced sulfur compounds.
    Franz B; Gehrke T; Lichtenberg H; Hormes J; Dahl C; Prange A
    Microbiology (Reading); 2009 Aug; 155(Pt 8):2766-2774. PubMed ID: 19423634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of purple photosynthetic bacteria in wetland and woodland habitats of central and northern Minnesota.
    Burke ME; Gorham E; Pratt DC
    J Bacteriol; 1974 Feb; 117(2):826-33. PubMed ID: 4590487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbiology of domestic wastes. I. Physiological activity of bacteria indigenous to lagoon operation as a function of seasonal change.
    Halvorson H; Ishaque M; Lees H
    Can J Microbiol; 1968 Apr; 14(4):369-76. PubMed ID: 5646837
    [No Abstract]   [Full Text] [Related]  

  • 8. Continuous culture of thiorhodaceae. Sulfide and sulfur limited growth of Chromatium vinosum.
    Van Gemerden H; Jannasch HW
    Arch Mikrobiol; 1971; 79(4):345-53. PubMed ID: 5126079
    [No Abstract]   [Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Case Study: Microbial Ecology and Forensics of Chinese Drywall-Elemental Sulfur Disproportionation as Primary Generator of Hydrogen Sulfide.
    Tomei Torres FA
    Microb Ecol; 2018 Jul; 76(1):37-48. PubMed ID: 28639032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations.
    Madigan MT; Takigiku R; Lee RG; Gest H; Hayes JM
    Appl Environ Microbiol; 1989 Mar; 55(3):639-44. PubMed ID: 11536609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats.
    D'Amelio ED; Cohen Y; Des Marais DJ
    Arch Microbiol; 1987; 147():213-20. PubMed ID: 11542090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum.
    Fry B; Gest H; Hayes JM
    FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Physilogical and biochemical properties of bacteria of Chromatium genus, isolated from water bodies enriched with hydrogen sulfide].
    Pavlova IuO; Hnatush SO; Hudz' SP
    Mikrobiol Z; 2009; 71(6):43-53. PubMed ID: 20455432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations.
    Cappenberg TE
    Antonie Van Leeuwenhoek; 1974; 40(2):285-95. PubMed ID: 4599093
    [No Abstract]   [Full Text] [Related]  

  • 16. Inhibition of photosynthetic sulfide oxidation by organic cations.
    Brune DC; Rivera Z; Jiménez LE
    Biochem Biophys Res Commun; 1984 Jun; 121(3):755-61. PubMed ID: 6743318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine.
    Gevertz D; Telang AJ; Voordouw G; Jenneman GE
    Appl Environ Microbiol; 2000 Jun; 66(6):2491-501. PubMed ID: 10831429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Ecophysiological properties of photosynthesizing bacteria from the Black Sea chemocline zone].
    Gorlenko VM; Mikheev PV; Rusanov II; Pimenov NV; Ivanov MV
    Mikrobiologiia; 2005; 74(2):239-47. PubMed ID: 15938401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal changes in a pink feedlot lagoon.
    Wenke TL; Vogt JC
    Appl Environ Microbiol; 1981 Feb; 41(2):381-5. PubMed ID: 16345711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochromes and anaerobic sulfide oxidation in the purple sulfur bacterium Chromatium warmingii.
    Wermter U; Fischer U
    Z Naturforsch C Biosci; 1983; 38(11-12):960-7. PubMed ID: 6670358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.