These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 4917228)

  • 1. Substrate specificity of ribosomal peptidyl transferase. The effect of the nature of the amino acid side chain on the acceptor activity of 2'(3')-O-aminoacyladenosines.
    Rychlík I; Cerná J; Chládek S; Pulkrábek P; Zemlicka J
    Eur J Biochem; 1970 Sep; 16(1):136-42. PubMed ID: 4917228
    [No Abstract]   [Full Text] [Related]  

  • 2. ON THE SITE OF ESTERIFICATION OF AMINO ACIDS TO SOLUBLE RNA.
    WOLFENDEN R; RAMMLER DH; LIPMANN F
    Biochemistry; 1964 Mar; 3():329-38. PubMed ID: 14155094
    [No Abstract]   [Full Text] [Related]  

  • 3. Substrate specificity of ribosomal peptidyl transferase: 2'(3')-O-aminoacyl nucleosides as acceptors of the peptide chain on the amino acid site.
    Rychlík I; Cerná J; Chládek S; Zemlicka J; Haladová Z
    J Mol Biol; 1969 Jul; 43(1):13-24. PubMed ID: 4897787
    [No Abstract]   [Full Text] [Related]  

  • 4. RAT LIVER ENZYME DOES NOT ACTIVATE ACETYLAMINO ACIDS.
    NARITA K; SATO N; OGATA K
    J Biochem; 1965 Feb; 57():176-83. PubMed ID: 14301780
    [No Abstract]   [Full Text] [Related]  

  • 5. SPECIFICITY OF PEPSIN AND ITS DEPENDENCE ON A POSSIBLE 'HYDROPHOBICBINDING SITE'.
    TANG J
    Nature; 1963 Sep; 199():1094-5. PubMed ID: 14066947
    [No Abstract]   [Full Text] [Related]  

  • 6. EFFECT OF BROMINATION ON THE BIOLOGICAL ACTIVITIES OF TRANSFER RNA OF ESCHERICHIA COLI.
    YU CT; ZAMECNIK PC
    Science; 1964 May; 144(3620):856-9. PubMed ID: 14149400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of Escherichia coli peptidyl-transferase.
    Panet A; de Groot N; Lapidot Y
    Eur J Biochem; 1970 Aug; 15(2):222-5. PubMed ID: 4926128
    [No Abstract]   [Full Text] [Related]  

  • 8. Isolation and characterization of novel antihypertensive bioactive peptides from brassica napus and angiotensin-converting enzyme (ace) inhibition potential.
    Mujtaba N; Jahan N; Naqvi SAR; Kiran S; Sultana B; Anjum Zia M
    Pak J Pharm Sci; 2022 Mar; 35(2(Special)):635-640. PubMed ID: 35668564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-Phenylalanine esters of open-chain analog of adenosine as substrates for ribosomal peptidyl transferase.
    Chládek S; Ringer D; Zemlicka J
    Biochemistry; 1973 Dec; 12(25):5135-8. PubMed ID: 4601225
    [No Abstract]   [Full Text] [Related]  

  • 10. Substrate specificity of Escherichia coli peptidyltransferase at the donor site.
    Mao JC
    Biochem Biophys Res Commun; 1973 May; 52(2):595-600. PubMed ID: 4575959
    [No Abstract]   [Full Text] [Related]  

  • 11. GAS CHROMATOGRAPHY OF AMINO ACIDS. 1. ANALYSIS OF THE MIXTURE OF METHYL-NTRIFLUOROACETYL DERIVATIVES.
    IKEKAWA N
    J Biochem; 1963 Sep; 54():279-82. PubMed ID: 14070458
    [No Abstract]   [Full Text] [Related]  

  • 12. POLYNUCLEOTIDE ANALOGUES. II. STIMULATION OF AMINO ACID INCORPORATION BY POLYNUCLEOTIDE ANALOGUES.
    GRUNBERG-MANAGO M; MICHELSON AM
    Biochim Biophys Acta; 1964 Mar; 80():431-40. PubMed ID: 14153845
    [No Abstract]   [Full Text] [Related]  

  • 13. Peptide-bond formation on the ribosome. A comparison of the acceptor-substrate specificity of peptidyl transferase in bacterial and mammalian ribosomes using puromycin analogues.
    Eckermann DJ; Greenwell P; Symons RH
    Eur J Biochem; 1974 Feb; 41(3):547-54. PubMed ID: 4593966
    [No Abstract]   [Full Text] [Related]  

  • 14. Substrate specificity of ribosomal peptidyl transferase. II. 2'(3')-O-aminoacyl nucleosides as acceptors of the peptide chain in the fragment reaction.
    Cerná J; Rychlík I; Zemlicka J; Chládek S
    Biochim Biophys Acta; 1970 Mar; 204(1):203-9. PubMed ID: 4908647
    [No Abstract]   [Full Text] [Related]  

  • 15. The nutrition of animal tissues cultivated in vitro. IV. Amino acid requirements of chick embryonic heart fibroblasts.
    MORGAN JF; MORTON HJ
    J Biophys Biochem Cytol; 1957 Mar; 3(2):141-50. PubMed ID: 13438897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin.
    Harris RJ; Hanlon JE; Symons RH
    Biochim Biophys Acta; 1971 Jun; 240(2):244-62. PubMed ID: 4934602
    [No Abstract]   [Full Text] [Related]  

  • 17. The amino acid requirements of rabbit fibroblasts, strain RM3-56.
    HAFF RF; SWIM HE
    J Gen Physiol; 1957 Sep; 41(1):91-100. PubMed ID: 13463271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DISSOCIATION OF AMINO ACID ACCEPTOR FUNCTION OF SRNA FROM ITS TRANSFER FUNCTION.
    NISHIMURA S; NOVELLI GD
    Proc Natl Acad Sci U S A; 1965 Jan; 53(1):178-84. PubMed ID: 14283195
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect of 5-fluorouracil and 6-thioguanine incorporation on the amino acid acceptor activity of Escherichia coli tRNA.
    Gray PN; Rachmeller M
    Biochim Biophys Acta; 1967 Apr; 138(2):432-5. PubMed ID: 4860475
    [No Abstract]   [Full Text] [Related]  

  • 20. The influence of short-range interactions on protein conformation. I. Side chain-backbone interactions within a single peptide unit.
    Kotelchuck D; Scheraga HA
    Proc Natl Acad Sci U S A; 1968 Dec; 61(4):1163-70. PubMed ID: 5249802
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.