These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 491753)

  • 1. Electrophysiology of "yellow cells," neurosecretory neurones in Lymnaea.
    Benjamin PR
    Malacologia; 1979; 18(1-2):483-4. PubMed ID: 491753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autocrine feedback inhibition of plateau potentials terminates phasic bursts in magnocellular neurosecretory cells of the rat supraoptic nucleus.
    Brown CH; Bourque CW
    J Physiol; 2004 Jun; 557(Pt 3):949-60. PubMed ID: 15107473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of membrane properties, synaptic input and electrical junction in determination of spike output of a pair of peptidergic neurons in the mollusc Lymnaea stagnalis.
    de Vlieger TA; Wildering WC; van der Wilt GJ; Janse C
    Acta Biol Hung; 1992; 43(1-4):137-46. PubMed ID: 1299106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental osmolarity and neurosecretory neurones in Lymnaea stagnalis (L.).
    Soffe SR; Slade CT; Benjamin PR
    Malacologia; 1979; 18(1-2):583-6. PubMed ID: 491760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the endogenous bursting properties of 'light yellow' neurosecretory cells in the freshwater snail Lymnaea stagnalis (L.).
    van Swigchem H
    J Exp Biol; 1979 Jun; 80():55-67. PubMed ID: 501277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Structure and electrophysiological properties of bursting neurosecretory cells in a peripheral sensory ganglion of the pond snail Lymnaea stagnalis].
    Nezlin LP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2004; 54(5):632-7. PubMed ID: 15573700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal firing patterns from epileptogenic foci of monkey and human.
    Wyler AR; Ward AA
    Adv Neurol; 1986; 44():967-89. PubMed ID: 3085439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and modulation of spike trains and oscillations in identified neural network of Lymnaea stagnalis L.
    Molnár G; Szücs A; Rózsa KS
    Acta Biol Hung; 2000; 51(2-4):231-5. PubMed ID: 11034147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conduction velocity and spike duration during afterdischarge in neuroendocrine bag cells of Aplysia.
    Dudek FE; Kossatz A
    J Neurobiol; 1982 Jul; 13(4):319-26. PubMed ID: 6965271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of adrenalectomy on the excitability of neurosecretory parvocellular neurones in the hypothalamic paraventricular nucleus.
    Yang JH; Li LH; Lee S; Jo IH; Lee SY; Ryu PD
    J Neuroendocrinol; 2007 Apr; 19(4):293-301. PubMed ID: 17355319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast oscillations trigger bursts of action potentials in neocortical neurons in vitro: a quasi-white-noise analysis study.
    Schindler KA; Goodman PH; Wieser HG; Douglas RJ
    Brain Res; 2006 Sep; 1110(1):201-10. PubMed ID: 16879807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orexin-induced modulation of state-dependent intrinsic properties in thalamic paraventricular nucleus neurons attenuates action potential patterning and frequency.
    Kolaj M; Doroshenko P; Yan Cao X; Coderre E; Renaud LP
    Neuroscience; 2007 Jul; 147(4):1066-75. PubMed ID: 17600629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent Na+ current modifies burst discharge by regulating conditional backpropagation of dendritic spikes.
    Doiron B; Noonan L; Lemon N; Turner RW
    J Neurophysiol; 2003 Jan; 89(1):324-37. PubMed ID: 12522183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic and oscillatory firing patterns in identified nerve cells of Lymnaea stagnalis L.
    Szücs A; Molnár G; S-Rózsa K
    Acta Biol Hung; 1999; 50(1-3):269-78. PubMed ID: 10574446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous bursting and rhythmic activity in the cuneate nucleus of anaesthetized rats.
    Sánchez E; Reboreda A; Romero M; Lamas JA
    Neuroscience; 2006 Aug; 141(1):487-500. PubMed ID: 16675133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiology of identified neurosecretory and non-neurosecretory cells in the cockroach pars intercerebralis.
    Krauthamer V
    J Exp Zool; 1985 May; 234(2):207-19. PubMed ID: 3998680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism.
    Wichmann T; Soares J
    J Neurophysiol; 2006 Apr; 95(4):2120-33. PubMed ID: 16371459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane mechanism of neuroendocrine caudo-dorsal cell inhibition by the ring neuron in the pond snail Lymnaea stagnalis.
    Jansen RF; ter Maat A; Bos NP
    J Neurobiol; 1985 Jan; 16(1):15-26. PubMed ID: 2580946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Burst discharge in mammalian neuroendocrine cells involves an intrinsic regenerative mechanism.
    Andrew RD; Dudek FE
    Science; 1983 Sep; 221(4615):1050-2. PubMed ID: 6879204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrotonic coupling and afterdischarges in the Light Green Cells: a comparison with two other cerebral ganglia neurosecretory cell types in the pond snail. Lymnaea stagnalis.
    Benjamin PR; Rose RM
    Comp Biochem Physiol A Comp Physiol; 1984; 77(1):67-74. PubMed ID: 6141033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.