BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 4919472)

  • 1. The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli.
    White RJ
    Biochem J; 1970 Jun; 118(1):89-92. PubMed ID: 4919472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-iodoacetyl-D-glucosamine, an inhibitor of growth and glycoside uptake in Escherichia coli.
    Kent PW; Ackers JP; White RJ
    Biochem J; 1970 Jun; 118(1):73-9. PubMed ID: 4919470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An examination of the inhibitory effects of N-iodoacetylglucosamine on Escherichia coli and isolation of resistant mutants.
    White RJ; Kent PW
    Biochem J; 1970 Jun; 118(1):81-7. PubMed ID: 4919471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars.
    White RJ
    Biochem J; 1968 Feb; 106(4):847-58. PubMed ID: 4866432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli.
    Kornberg HL; Reeves RE
    Biochem J; 1972 Aug; 128(5):1339-44. PubMed ID: 4345358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino-sugar transport systems of Escherichia coli K12.
    Jones-Mortimer MC; Kornberg HL
    J Gen Microbiol; 1980 Apr; 117(2):369-76. PubMed ID: 6252281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli.
    Kaback HR
    J Biol Chem; 1968 Jul; 243(13):3711-24. PubMed ID: 4872728
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the relation of thiomethyl-beta-D-galactoside accumulation to thiomethyl-beta-D-galactoside phosphorylation in Staphylococcus aureus HS1159.
    Laue P; MacDonald RE
    Biochim Biophys Acta; 1968 Oct; 165(3):410-8. PubMed ID: 5737935
    [No Abstract]   [Full Text] [Related]  

  • 9. Evidence for a phosphoenolpyruvate-dependent sugar phosphotransferase in Mycoplasma strain Y.
    Van Demark PJ; Plackett P
    J Bacteriol; 1972 Aug; 111(2):454-8. PubMed ID: 5053467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmasking of an essential thiol during function of the membrane-bound enzyme II of the phosphenolpyruvate beta-glucoside phosphotransferase system of Escherichia coli.
    Haguenauer-Tsapis R; Kepes A
    Biochim Biophys Acta; 1979 Feb; 551(1):157-68. PubMed ID: 371680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of N-acetyl-D-mannosamine and N-acetyl-D-glucosamine in Escherichia coli K1: effect on capsular polysialic acid production.
    Revilla-Nuin B; Reglero A; Martínez-Blanco H; Bravo IG; Ferrero MA; Rodríguez-Aparicio LB
    FEBS Lett; 2002 Jan; 511(1-3):97-101. PubMed ID: 11821056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose catabolite repression in Escherichia coli K12 mutants defective in methyl-alpha-d-glucoside transport.
    Bourd GI; Erlagaeva RS; Bolshakova TN; Gershanovitch VN
    Eur J Biochem; 1975 May; 53(2):419-27. PubMed ID: 1095369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [2 phosphotransferase systems that control the second stage of phosphoenolpyruvate-dependent glucose phosphorylation in E. coli].
    Golub EI; Garaev MM
    Biokhimiia; 1975; 40(1):25-31. PubMed ID: 1095077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of streptozotocin during uptake via the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli.
    Ammer J; Brennenstuhl M; Schindler P; Höltje JV; Zähner H
    Antimicrob Agents Chemother; 1979 Dec; 16(6):801-7. PubMed ID: 161156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between hexose transport and phosphotransferase activity in Escherichia coli.
    Kornberg HL; Reeves RE
    Biochem J; 1972 Mar; 126(5):1241-3. PubMed ID: 4561387
    [No Abstract]   [Full Text] [Related]  

  • 16. [Effect of a mutational lesion to the phosphoenolpyruvate-dependent phosphotransferase system on the transport of hydrolyzable beta-galactosides in Escherichia coli K12].
    Bol'shakova TN; Burd GI; Gershanovich VN
    Biokhimiia; 1974; 39(4):808-10. PubMed ID: 4613390
    [No Abstract]   [Full Text] [Related]  

  • 17. Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system.
    Kundig W; Kundig FD; Anderson B; Roseman S
    J Biol Chem; 1966 Jul; 241(13):3243-6. PubMed ID: 5330267
    [No Abstract]   [Full Text] [Related]  

  • 18. A new assay of the phosphotransferase system in Escherichia coli.
    Gachelin G
    Biochem Biophys Res Commun; 1969 Feb; 34(4):382-7. PubMed ID: 4887459
    [No Abstract]   [Full Text] [Related]  

  • 19. The role of enzyme I in the unmasking of an essential thiol of the membrane-bound enzyme II of the phosphoenolpyruvate-glucose phosphotransferase system of Escherichia coli.
    Haguenauer-Tsapis R; Kepes A
    Biochim Biophys Acta; 1977 Sep; 469(2):211-5. PubMed ID: 197996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unmasking of an essential thiol during function of the membrane bound enzyme II of the phosphoenolpyruvate glucose phosphotransferase system of Escherichia coli.
    Haguenauer-Tsapis R; Kepes A
    Biochim Biophys Acta; 1977 Feb; 465(1):118-30. PubMed ID: 319829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.