These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 4919472)

  • 21. Relationships between beta-galactoside transport system and phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli K12.
    Burd GI; Bol'shakova TN; Gershanovich VN
    Mol Biol; 1973; 7(3):252-6. PubMed ID: 4589445
    [No Abstract]   [Full Text] [Related]  

  • 22. Repression of beta-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli. Repression in the absence of glucose phosphorylation.
    Pastan I; Perlman RL
    J Biol Chem; 1969 Nov; 244(21):5836-42. PubMed ID: 4310826
    [No Abstract]   [Full Text] [Related]  

  • 23. Mode of action of a bacteriocin from Serratia marcescens.
    Foulds J
    J Bacteriol; 1971 Sep; 107(3):833-9. PubMed ID: 4328755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vinylglycolate resistance in Escherichia coli.
    Shaw L; Grau F; Kaback HR; Hong JS; Walsh C
    J Bacteriol; 1975 Mar; 121(3):1047-55. PubMed ID: 1090585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system with adenylate cyclase of Escherichia coli.
    Peterkofsky A; Gazdar C
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2920-4. PubMed ID: 1103128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition by 3-deoxy-3-fluoro-D-glucose of the utilization of lactose and other carbon sources by Escherichia coli.
    Miles RJ; Pirt SJ
    J Gen Microbiol; 1973 Jun; 76(2):305-18. PubMed ID: 4579128
    [No Abstract]   [Full Text] [Related]  

  • 27. Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli.
    Harwood JP; Gazdar C; Prasad C; Peterkofsky A; Curtis SJ; Epstein W
    J Biol Chem; 1976 Apr; 251(8):2462-8. PubMed ID: 177417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical characterization of the ctr mutants of Escherichia coli.
    Morse HG; Penberthy WK; Morse ML
    J Bacteriol; 1971 Nov; 108(2):690-4. PubMed ID: 4942759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of glucosamine utilization in Staphylococcus aureus and Escherichia coli.
    Imada A; Nozaki Y; Kawashima F; Yoneda M
    J Gen Microbiol; 1977 Jun; 100(2):329-37. PubMed ID: 330812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth of Escherichia coli on glucosamine 6-phosphate: selection of a constitutive hexose phosphate transport system mutant.
    Dietz GW
    Can J Microbiol; 1978 Mar; 24(3):203-8. PubMed ID: 206329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.
    Reider E; Wagner EF; Schweiger M
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase.
    Curtis SJ; Epstein W
    J Bacteriol; 1975 Jun; 122(3):1189-99. PubMed ID: 1097393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphotransferase-mediated regulation of carbohydrate utilization in Escherichia coli K12: the nature of the iex (crr) and gsr (tgs) mutations.
    Parra F; Jones-Mortimer MC; Kornberg HL
    J Gen Microbiol; 1983 Feb; 129(2):337-48. PubMed ID: 6302201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of colicins K and E1 on the glucose phosphotransferase system.
    Jetten AM
    Biochim Biophys Acta; 1976 Aug; 440(2):403-11. PubMed ID: 182245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Glucose transport system and regulation of gene expression in Escherichia coli].
    Gershanovich VN; Burd GI; Bol'shakov TN; Erlagayeva RS; Umiarov AM; Gadrielian TR
    Mikrobiologiia; 1977; 46(5):912-9. PubMed ID: 414051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The physiological behavior of enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system.
    Saier MH; Simoni RD; Roseman S
    J Biol Chem; 1970 Nov; 245(21):5870-3. PubMed ID: 4919491
    [No Abstract]   [Full Text] [Related]  

  • 37. Characterisation of mutants of Escherichia coli K12, selected by resistance to streptozotocin.
    Lengeler J
    Mol Gen Genet; 1980; 179(1):49-54. PubMed ID: 6450313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria.
    Romano AH; Eberhard SJ; Dingle SL; McDowell TD
    J Bacteriol; 1970 Nov; 104(2):808-13. PubMed ID: 5489437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uptake of fructose by the sorbitol phosphotransferase of Escherichia coli K12.
    Jones-Mortimer MC; Kornberg HL
    J Gen Microbiol; 1976 Oct; 96(2):383-91. PubMed ID: 792388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Restoration of active transport in an Mg2+-adenosine triphosphatase-deficient mutant of Escherichia coli.
    Rosen BP
    J Bacteriol; 1973 Dec; 116(3):1124-9. PubMed ID: 4270946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.