These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 4919472)

  • 41. Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport.
    Simoni RD; Levinthal M; Kundig FD; Kundig W; Anderson B; Hartman PE; Roseman S
    Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1963-70. PubMed ID: 4866983
    [No Abstract]   [Full Text] [Related]  

  • 42. Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa.
    Phibbs PV; Eagon RG
    Arch Biochem Biophys; 1970 Jun; 138(2):470-82. PubMed ID: 4988450
    [No Abstract]   [Full Text] [Related]  

  • 43. II-BGlc, a glucose receptor of the bacterial phosphotransferase system: molecular cloning of ptsG and purification of the receptor from an overproducing strain of Escherichia coli.
    Bouma CL; Meadow ND; Stover EW; Roseman S
    Proc Natl Acad Sci U S A; 1987 Feb; 84(4):930-4. PubMed ID: 3029764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Commitment to sporulation and induction of glucose-phosphoenolpyruvate-transferase.
    Freese E; Klofat W; Galliers E
    Biochim Biophys Acta; 1970 Nov; 222(2):265-89. PubMed ID: 4992519
    [No Abstract]   [Full Text] [Related]  

  • 45. Physiological basis of transient repression of catabolic enzymes in Escherichia coli.
    Tyler B; Magasanik B
    J Bacteriol; 1970 May; 102(2):411-22. PubMed ID: 4911541
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of aerosolization on the transport of -methyl glucoside and galactosides into Escherichia coli.
    Benbough JE; Hambleton P; Martin KL; Strange RE
    J Gen Microbiol; 1972 Oct; 72(3):511-20. PubMed ID: 4344311
    [No Abstract]   [Full Text] [Related]  

  • 47. Uptake of N-acetyl-D-mannosamine: an essential intermediate in polysialic acid biosynthesis by Escherichia coli K92.
    Revilla-Nuin B; Reglero A; Ferrero MA; Rodríguez-Aparicio LB
    FEBS Lett; 1999 Apr; 449(2-3):183-6. PubMed ID: 10338128
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pyruvate formation during the catabolism of simple hexose sugars by Escherichia coli: studies with pyruvate kinase-negative mutants.
    Pertierra AG; Cooper RA
    J Bacteriol; 1977 Mar; 129(3):1208-14. PubMed ID: 321416
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The regulation of transport of glucose and methyl alpha-glucoside in Pseudomonas aeruginosa.
    Midgley M; Dawes EA
    Biochem J; 1973 Feb; 132(2):141-54. PubMed ID: 4199012
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic control of inducer exclusion by Escherichia coli.
    Jones-Mortimer MC; Kornberg HL
    FEBS Lett; 1974 Nov; 48(1):93-5. PubMed ID: 4609803
    [No Abstract]   [Full Text] [Related]  

  • 51. Lack of glucose phosphotransferase function in phosphofructokinase mutants of Escherichia coli.
    Roehl RA; Vinopal RT
    J Bacteriol; 1976 May; 126(2):852-60. PubMed ID: 177406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system.
    Cordaro C
    Annu Rev Genet; 1976; 10():341-59. PubMed ID: 189682
    [No Abstract]   [Full Text] [Related]  

  • 53. Vinylglycolic acid. An inactivator of the phosphoenolpyruvate-phosphate transferase system in Escherichia coli.
    Walsh CT; Kaback HR
    J Biol Chem; 1973 Aug; 248(15):5456-62. PubMed ID: 4588683
    [No Abstract]   [Full Text] [Related]  

  • 54. Energy coupling in the lactose transport system of Escherichia coli.
    Wong PT; Kashket ER; Wilson TH
    Proc Natl Acad Sci U S A; 1970 Jan; 65(1):63-9. PubMed ID: 4905670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two kinds of mutants defective in multiple carbohydrate utilization isolated from in vitro fosfomycin-resistant strains of Escherichia coli K--12.
    Tsuruoka T; Miyata A; Yamada Y
    J Antibiot (Tokyo); 1978 Mar; 31(3):192-201. PubMed ID: 206529
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system.
    Tanaka S; Lin EC
    Proc Natl Acad Sci U S A; 1967 Apr; 57(4):913-9. PubMed ID: 5231354
    [No Abstract]   [Full Text] [Related]  

  • 57. Enrichment of mutants lacking the phosphoenolpyruvate-dependent phosphotransferase system of Vibrio parahaemolyticus by screening with methyl-alpha-D-glucoside.
    Matsumoto K; Iuchi S; Fujisawa A; Tanaka S
    J Bacteriol; 1974 Aug; 119(2):632-4. PubMed ID: 4851869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insulin action on Escherichia coli. Regulation of the adenylate cyclase and phosphotransferase enzymes.
    Abou-Sabe' M; Reilly T
    Biochim Biophys Acta; 1978 Sep; 542(3):442-55. PubMed ID: 356893
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of lactose transport by the phosphoenolpyruvate-sugar phosphotransferase system in membrane vesicles of Escherichia coli.
    Dills SS; Schmidt MR; Saier MH
    J Cell Biochem; 1982; 18(2):239-44. PubMed ID: 7040431
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Apparent 'glucokinase' activity in non-hepatic tissues due to N-acetyl-D-glucosamine kinase.
    Allen MB; Brockelbank JL; Walker DG
    Biochim Biophys Acta; 1980 Aug; 614(2):357-66. PubMed ID: 6250623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.