These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 4919491)

  • 1. The physiological behavior of enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system.
    Saier MH; Simoni RD; Roseman S
    J Biol Chem; 1970 Nov; 245(21):5870-3. PubMed ID: 4919491
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of constitutive galactose permease mutants in Salmonella typhimurium.
    Saier MH; Bromberg FG; Roseman S
    J Bacteriol; 1973 Jan; 113(1):512-4. PubMed ID: 4569699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport.
    Simoni RD; Levinthal M; Kundig FD; Kundig W; Anderson B; Hartman PE; Roseman S
    Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1963-70. PubMed ID: 4866983
    [No Abstract]   [Full Text] [Related]  

  • 4. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli.
    Kornberg HL; Reeves RE
    Biochem J; 1972 Aug; 128(5):1339-44. PubMed ID: 4345358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization of the ctr mutants of Escherichia coli.
    Morse HG; Penberthy WK; Morse ML
    J Bacteriol; 1971 Nov; 108(2):690-4. PubMed ID: 4942759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of replacing the general energy-coupling proteins of the PEP:sugar phosphotransferase system of Salmonella typhimurium with their fructose-inducible counterparts on utilization of the PTS sugar glucitol.
    Sutrina SL; Alleyne L; Hoyte K; Blenman M
    Microbiology (Reading); 2002 Dec; 148(Pt 12):3857-3864. PubMed ID: 12480889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE GLUCOSE PERMEASE SYSTEM IN BACTERIA.
    HOFFEE P; ENGLESBERG E; LAMY F
    Biochim Biophys Acta; 1964 Mar; 79():337-50. PubMed ID: 14163518
    [No Abstract]   [Full Text] [Related]  

  • 9. Determination of the levels of HPr and enzyme I of the phosphoenolpyruvate-sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium.
    Mattoo RL; Waygood EB
    Can J Biochem Cell Biol; 1983 Jan; 61(1):29-37. PubMed ID: 6406017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization and transport of hexoses by mutant strains of Salmonella typhimurium lacking enzyme I of the phosphoenolpyruvate-dependent phosphotransferase system.
    Saier MH; Young WS; Roseman S
    J Biol Chem; 1971 Sep; 246(18):5838-40. PubMed ID: 4938041
    [No Abstract]   [Full Text] [Related]  

  • 11. Reduction in biosynthesis rate for RNA and protein in a thermosensitive E. coli K12 mutant defective in the Roseman phosphotransferase system.
    Burd GI; Bol'shakova TN; Saprykina TP; Klyucheva VV; Gershanovich VN
    Mol Biol; 1971; 5(3):307-11. PubMed ID: 4949475
    [No Abstract]   [Full Text] [Related]  

  • 12. Genetic analysis of carbohydrate transport-deficient mutants of Salmonella typhimurium.
    Levinthal M; Simoni RD
    J Bacteriol; 1969 Jan; 97(1):250-5. PubMed ID: 4884816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold-sensitive mutants of Salmonella typhimurium defective in uridine monophosphate kinase (pyrH).
    Ingraham JL; Neuhard J
    J Biol Chem; 1972 Oct; 247(19):6259-65. PubMed ID: 4568611
    [No Abstract]   [Full Text] [Related]  

  • 14. The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli.
    White RJ
    Biochem J; 1970 Jun; 118(1):89-92. PubMed ID: 4919472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli.
    Saier MH; Feucht BU; Hofstadter LJ
    J Biol Chem; 1976 Feb; 251(3):883-92. PubMed ID: 765335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli.
    Kaback HR
    J Biol Chem; 1968 Jul; 243(13):3711-24. PubMed ID: 4872728
    [No Abstract]   [Full Text] [Related]  

  • 17. Leakage of periplasmic enzymes by mutants of Escherichia coli and Salmonella typhimurium: isolation of "periplasmic leaky" mutants.
    Lopes J; Gottfried S; Rothfield L
    J Bacteriol; 1972 Feb; 109(2):520-5. PubMed ID: 4333606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological basis of transient repression of catabolic enzymes in Escherichia coli.
    Tyler B; Magasanik B
    J Bacteriol; 1970 May; 102(2):411-22. PubMed ID: 4911541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-Deoxy-3-fluoro-D-glucose-resistant Salmonella typhimurium mutants defective in the phosphoenolpyruvate:glycose phosphotransferase system.
    Melton T; Kundig W; Hartman PE; Meadow N
    J Bacteriol; 1976 Dec; 128(3):794-800. PubMed ID: 791932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of succinate utilization in enzyme I mutants of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli.
    Alexander JK; Tyler B
    J Bacteriol; 1975 Oct; 124(1):252-61. PubMed ID: 170246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.