These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4919810)

  • 1. 2'-O-methyloligoadenylates as templates for the binding of lysyl transfer ribonucleic acid to ribosomes.
    Price AR; Rottman F
    Biochemistry; 1970 Nov; 9(23):4524-9. PubMed ID: 4919810
    [No Abstract]   [Full Text] [Related]  

  • 2. A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates.
    Davies J; Jones DS; Khorana HG
    J Mol Biol; 1966 Jun; 18(1):48-57. PubMed ID: 5337558
    [No Abstract]   [Full Text] [Related]  

  • 3. Anaerobiosis-induced changes in an isoleucyl transfer ribonucleic acid and the 50S ribosomes of Escherichia coli.
    Kwan CN; Apirion D; Schlessinger D
    Biochemistry; 1968 Jan; 7(1):427-33. PubMed ID: 4921282
    [No Abstract]   [Full Text] [Related]  

  • 4. Specificity of rat liver lysine transfer ribonucleic acid for codon recognition.
    Liu LP; Ortwerth BJ
    Biochemistry; 1972 Jan; 11(1):12-7. PubMed ID: 4550553
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the formation of transfer ribonucleic acid-ribosome complexes. VI. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of soluble transfer factors.
    Pestka S
    J Biol Chem; 1969 Mar; 244(6):1533-9. PubMed ID: 4886309
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of 5'-substitution on the template activity of oligo-nucleotides for the binding of valine and alanine tRNA to ribosomes.
    Holý A; Grünberger D; Sorm F
    Biochim Biophys Acta; 1970 Oct; 217(2):332-45. PubMed ID: 4919651
    [No Abstract]   [Full Text] [Related]  

  • 7. Polyadenylic acid-directed binding of oligolysyl transfer RNA to ribosomes. Inhibition by lysyl and deacylated transfer RNA.
    Ikemura T; Fukutome H
    Biochim Biophys Acta; 1969 May; 182(1):98-104. PubMed ID: 4893419
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparative studies on specific and nonspecific binding of transfer ribonucleic acid to ribosomes.
    Takeda Y; Suzuka I; Kaji A
    J Biol Chem; 1968 Mar; 243(6):1075-81. PubMed ID: 4869014
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition by pactamycin of the initiation of protein synthesis. Binding of N-acetylphenylalanyl transfer ribonucleic acid and polyuridylic acid to ribosomes.
    Cohen LB; Herner AE; Goldberg IH
    Biochemistry; 1969 Apr; 8(4):1312-26. PubMed ID: 4896457
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of some triribonucleoside diphosphates containing inosine on the binding of [14C]aminoacyl-tRNA to ribosomes.
    Grünberger D; Holý A; Sorm F
    Biochim Biophys Acta; 1967 Nov; 149(1):246-52. PubMed ID: 4867551
    [No Abstract]   [Full Text] [Related]  

  • 11. A general method for the separation of isoaccepting transfer ribonucleic acids: purification of five leucine transfer ribonucleic acids from Escherichia coli.
    Holladay DW; Pearson RL; Kelmers AD
    Biochim Biophys Acta; 1971 Jul; 240(4):541-53. PubMed ID: 4941741
    [No Abstract]   [Full Text] [Related]  

  • 12. Characteristics of N-Ac-Phe-tRNA binding and its correlation with internal aminoacyl-tRNA recognition.
    Springer M; Grunberg-Manago M
    Biochem Biophys Res Commun; 1972 Apr; 47(2):477-84. PubMed ID: 4575689
    [No Abstract]   [Full Text] [Related]  

  • 13. Modifications of ribonucleic acid by chemical carcinogens. I. In vitro modification of transfer ribonucleic acid by N-acetoxy-2-acetylaminofluorene.
    Fink LM; Nishimura S; Weinstein IB
    Biochemistry; 1970 Feb; 9(3):496-502. PubMed ID: 4906322
    [No Abstract]   [Full Text] [Related]  

  • 14. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl transfer ribonucleic acid synthetases.
    Roy KL; Söll D
    J Biol Chem; 1970 Mar; 245(6):1394-400. PubMed ID: 4910052
    [No Abstract]   [Full Text] [Related]  

  • 15. Coding properties of methyl-deficient phenylalanyl transfer ribonucleic acid from Escherichia coli.
    Stern R; Gonano F; Fleissner E; Littauer UZ
    Biochemistry; 1970 Jan; 9(1):10-8. PubMed ID: 4903881
    [No Abstract]   [Full Text] [Related]  

  • 16. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes.
    Ravel JM
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1811-6. PubMed ID: 5340636
    [No Abstract]   [Full Text] [Related]  

  • 17. Purification of five leucine transfer ribonucleic acid species from Escherichia coli and their acylation by heterologous leucyl-transfer ribonucleic acid synthetase.
    Blank HU; Söll D
    J Biol Chem; 1971 Aug; 246(16):4947-50. PubMed ID: 4936719
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of messenger RNA in binding of peptidyl transfer RNA to 30-S and 50-S ribosomal subunits.
    Jonák J; Rychlík I
    Biochim Biophys Acta; 1970 Feb; 199(2):421-34. PubMed ID: 4907336
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on the formation of transfer ribonucleic acid-ribosome complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action.
    Pestka S
    Biochem Biophys Res Commun; 1969 Aug; 36(4):589-95. PubMed ID: 4897408
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on codons for tyrosyl transfer ribonucleic acid and lysyl transfer ribonucleic acid of yeast.
    Brown DM; Clark BF; Tanner MJ
    Eur J Biochem; 1968 Sep; 5(4):492-9. PubMed ID: 4880673
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.