These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 4920209)

  • 1. Activation of experimental epileptogenic foci. Action of increased K+ in extracellular spaces of the brain.
    Zuckermann EC; Glaser GH
    Arch Neurol; 1970 Oct; 23(4):358-64. PubMed ID: 4920209
    [No Abstract]   [Full Text] [Related]  

  • 2. A physiological difference in the hippocampus of rats with a low inborn learning ability.
    Izquierdo I; Orsingher OA
    Psychopharmacologia; 1972; 23(4):386-96. PubMed ID: 4260243
    [No Abstract]   [Full Text] [Related]  

  • 3. Slow potential shifts in dorsal hippocampus during "epileptogenic" perfusion of the inferior horn with high-potassium CSF.
    Zuckermann EC; Glaser GH
    Electroencephalogr Clin Neurophysiol; 1970 Mar; 28(3):236-46. PubMed ID: 4190120
    [No Abstract]   [Full Text] [Related]  

  • 4. Extracellular potassium in the mammalian central nervous system.
    Somjen GG
    Annu Rev Physiol; 1979; 41():159-77. PubMed ID: 373587
    [No Abstract]   [Full Text] [Related]  

  • 5. Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue.
    Heinemann U; Konnerth A; Pumain R; Wadman WJ
    Adv Neurol; 1986; 44():641-61. PubMed ID: 3518350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular dendritic fields and unit activity of hippocampal neurons during epileptogenesis induced by "abnormal" CSF perfusion.
    Zuckermann EC; Glaser GH
    Electroencephalogr Clin Neurophysiol; 1969 Sep; 27(7):682. PubMed ID: 4187341
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of extracellular potassium in hippocampal epilepsy.
    Fisher RS; Pedley TA; Moody WJ; Prince DA
    Arch Neurol; 1976 Feb; 33(2):76-83. PubMed ID: 1252153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence for the existence of an extrarhinencephalic control of the activity of the cobalt rhinencephalic epileptogenic focus. Part 2. Effects of the paleocerebellar stimulation.
    Mutani R; Bergamini L; Doriguzzi T
    Epilepsia; 1969 Sep; 10(3):351-62. PubMed ID: 5256908
    [No Abstract]   [Full Text] [Related]  

  • 9. Changes in extracellular potassium activity during neocortical propagated seizures.
    Sypert GW; Ward AA
    Exp Neurol; 1974 Oct; 45(1):19-41. PubMed ID: 4412381
    [No Abstract]   [Full Text] [Related]  

  • 10. Experimental evidence for the existence of an extrarhinencephalic control of the activity of the cobalt rhinencephalic epileptogenic focus. Part 1. The role played by the caudate nucleus.
    Mutani R
    Epilepsia; 1969 Sep; 10(3):337-50. PubMed ID: 4895031
    [No Abstract]   [Full Text] [Related]  

  • 11. Interaction of two epileptogenic foci located in the hypothalamus and the dorsal hippocampus, respectively.
    Voiculescu V; Sirian S; Ungher I; Nestorescu A
    Neurol Psychiatr (Bucur); 1981; 19(3):169-75. PubMed ID: 7323642
    [No Abstract]   [Full Text] [Related]  

  • 12. Epileptogenic effects of localized ventricular perfusion of ouabain on dorsal hippocampus.
    Pedley TA; Zuckermann EC; Glaser GH
    Exp Neurol; 1969 Oct; 25(2):207-19. PubMed ID: 5345010
    [No Abstract]   [Full Text] [Related]  

  • 13. The correlation between extracellular potassium concentration and hippocampal epileptic activity in vitro.
    Ogata N; Hori N; Katsuda N
    Brain Res; 1976 Jul; 110(2):371-5. PubMed ID: 938950
    [No Abstract]   [Full Text] [Related]  

  • 14. Potassium accumulation in interstitial space during epileptiform seizures.
    Fertziger AP; Ranck JB
    Exp Neurol; 1970 Mar; 26(3):571-85. PubMed ID: 5435740
    [No Abstract]   [Full Text] [Related]  

  • 15. Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid.
    Zuckermann EC; Glaser GH
    Exp Neurol; 1968 Jan; 20(1):87-110. PubMed ID: 5637118
    [No Abstract]   [Full Text] [Related]  

  • 16. [Glutamate-induced disturbance of neurotransmission and homeostasis of extracellular Ca(2+) and K(+) ions in CA1 area of the hippocampus].
    Motin VG
    Biull Eksp Biol Med; 1997 Sep; 124(9):255-8. PubMed ID: 9445599
    [No Abstract]   [Full Text] [Related]  

  • 17. [Kinetics of extracellular potassium at the epileptogenic focus].
    Iwayama K; Mori K; Ono H; Yonekura M
    No To Shinkei; 1976 May; 28(5):487-92. PubMed ID: 1036067
    [No Abstract]   [Full Text] [Related]  

  • 18. Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats.
    Lothman E; Lamanna J; Cordingley G; Rosenthal M; Somjen G
    Brain Res; 1975 Apr; 88(1):15-36. PubMed ID: 164265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silent cells during interictal discharges and seizures in hippocampal penicillin foci. Evidence for the role of extracellular K+ in the transition from the interictal state to seizures.
    Dichter MA; Herman CJ; Selzer M
    Brain Res; 1972 Dec; 48():173-83. PubMed ID: 4645204
    [No Abstract]   [Full Text] [Related]  

  • 20. Membrane properties of neuroglia in epileptogenic gliosis.
    Glötzner FL
    Brain Res; 1973 May; 55(1):159-71. PubMed ID: 4713186
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.