These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 492074)

  • 1. Assessment of errors in intensity measurements of pulse echo ultrasound using miniature hydrophones.
    Fischella PS; Carson PL
    Med Phys; 1979; 6(5):404-11. PubMed ID: 492074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A discussion of procedures for ultrasonic intensity and power calculations from miniature hydrophone measurements.
    Harris GR
    Ultrasound Med Biol; 1985; 11(6):803-17. PubMed ID: 3913079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of two calibration methods for ultrasonic hydrophones.
    Gloersen WB; Harris GR; Stewart HF; Lewin PA
    Ultrasound Med Biol; 1982; 8(5):545-8. PubMed ID: 7147468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angular response of miniature ultrasonic hydrophones.
    Shombert DG; Smith SW; Harris GR
    Med Phys; 1982; 9(4):484-92. PubMed ID: 7110078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of nonlinear fields on miniature hydrophone calibration using the planar scanning technique.
    Corbett SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):162-7. PubMed ID: 18290142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time delay spectrometry for hydrophone calibrations below 1 MHz.
    Gammell PM; Harris GR
    J Acoust Soc Am; 1999 Nov; 106(5):L41-6. PubMed ID: 10573913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glass-windowed ultrasound transducers.
    Yddal T; Gilja OH; Cochran S; Postema M; Kotopoulis S
    Ultrasonics; 2016 May; 68():108-19. PubMed ID: 26938326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements.
    Rad AJ; Ueberle F; Krueger K
    Rev Sci Instrum; 2014 Jan; 85(1):014902. PubMed ID: 24517798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are hydrophones of diameter 0.5 mm small enough to characterise diagnostic ultrasound equipment?
    Smith RA
    Phys Med Biol; 1989 Nov; 34(11):1593-607. PubMed ID: 2685834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithotripsy pulse measurement errors due to nonideal hydrophone and amplifier frequency responses.
    Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):256-61. PubMed ID: 18263144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields.
    Martin E; Treeby B
    J Acoust Soc Am; 2019 Mar; 145(3):1270. PubMed ID: 31067926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of diagnostic electronic linear arrays by miniature hydrophone scanning.
    Ide M; Ohdaira E
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):214-9. PubMed ID: 18290147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of two methods for determining ultrasonic intensity for medical transducers.
    Shombert DG; Robinson RA
    Ultrasonics; 1983 Sep; 21(5):234-6. PubMed ID: 6612895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.
    Nagle SM; Sundar G; Schafer ME; Harris GR; Vaezy S; Gessert JM; Howard SM; Moore MK; Eaton RM;
    J Ultrasound Med; 2013 Nov; 32(11):1897-911. PubMed ID: 24154893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of effective radiating area measurement for therapeutic ultrasound transducers to variations in hydrophone scanning technique.
    Bly SH; Hussey RG; Kingsley JP; Dickson AW
    Health Phys; 1989 Oct; 57(4):637-43. PubMed ID: 2793480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic Power Output Measurement by Pulsed Radiation Pressure.
    Fick SE; Breckenridge FR
    J Res Natl Inst Stand Technol; 1996; 101(5):659-669. PubMed ID: 27805084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophone Spatial Averaging Artifacts for ARFI Beams from Array Transducers.
    Wear K; Shah A; Ivory AM; Baker C
    IEEE Int Ultrason Symp; 2020; NA():1-4. PubMed ID: 35733623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lorentz-force hydrophone characterization.
    Grasland-Mongrain P; Mari JM; Gilles B; Poizat A; Chapelon JY; Lafon C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):353-63. PubMed ID: 24474140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between experimental and computational methods for the acoustic and thermal characterization of therapeutic ultrasound fields.
    Maruvada S; Liu Y; Soneson JE; Herman BA; Harris GR
    J Acoust Soc Am; 2015 Apr; 137(4):1704-13. PubMed ID: 25920823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.