These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 4920798)

  • 1. Effects of botulinum toxin on the distribution of succinate dehydrogenase and phosphorylase in fast and slow skeletal muscles of the mouse.
    Duchen LW
    J Neurol Neurosurg Psychiatry; 1970 Oct; 33(5):580-5. PubMed ID: 4920798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histological differences between soleus and gastrocnemius muscles in the mouse after the local injection of botulinum toxin.
    Duchen LW
    J Physiol; 1969 Sep; 204(1):17P-18P. PubMed ID: 4900769
    [No Abstract]   [Full Text] [Related]  

  • 3. Changes in motor innervation and cholinesterase localization induced by botulinum toxin in skeletal muscle of the mouse: differences between fast and slow muscles.
    Duchen LW
    J Neurol Neurosurg Psychiatry; 1970 Feb; 33(1):40-54. PubMed ID: 4907278
    [No Abstract]   [Full Text] [Related]  

  • 4. Relationship between myoglobin and succinate dehydrogenase in mouse soleus and plantaris muscle fibres.
    Van der Laarse WJ; Maslam S; Diegenbach PC
    Histochem J; 1985 Jan; 17(1):1-11. PubMed ID: 3157665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of implantation of an extra nerve on the recovery of neuromuscular transmission from botulinum toxin.
    Tonge DA
    J Physiol; 1977 Mar; 265(3):809-20. PubMed ID: 192880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal growth and differentiation of muscle fibres in the mouse. I. A histochemical and morphometrical investigation of normal muscle.
    Wirtz P; Loermans HM; Peer PG; Reintjes AG
    J Anat; 1983 Aug; 137 (Pt 1)(Pt 1):109-26. PubMed ID: 6226633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the electron microscopic structure of slow and fast skeletal muscle fibres of the mouse after the local injection of botulinum toxin.
    Duchen LW
    J Neurol Sci; 1971 Sep; 14(1):61-74. PubMed ID: 5119452
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of botulinum toxin induced muscle paralysis on endocytosis and lysosomal enzyme activities in mouse skeletal muscle.
    Tågerud S; Libelius R; Thesleff S
    Pflugers Arch; 1986 Sep; 407(3):275-8. PubMed ID: 3763372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of tenotomy and overload on the postnatal development of muscle fibre histochemistry in the cat triceps surae.
    Gollvik L; Kellerth JO; Ulfhake B
    Acta Physiol Scand; 1988 Mar; 132(3):353-62. PubMed ID: 2465666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative succinate-dehydrogenase histochemistry. I. A Methodological study on mammalian and fish muscle.
    Pool CW; Diegenbach PC; Scholten G
    Histochemistry; 1979; 64(3):251-62. PubMed ID: 93099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive changes in locomotor activity following botulinum toxin injection in ankle extensor muscles of cats.
    Misiaszek JE; Pearson KG
    J Neurophysiol; 2002 Jan; 87(1):229-39. PubMed ID: 11784745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histochemical staining patterns of muscle fibres in the gastrocnemius, soleus and anterior tibial muscles of the adult cat, as viewed in serial sections stained for lipids and succinic dehydrogenase.
    Hammarberg C
    Acta Neurol Scand; 1974; 50(3):272-84. PubMed ID: 4134728
    [No Abstract]   [Full Text] [Related]  

  • 13. The histochemical appearance of developing muscle fibres in the gastrocnemius, soleus and anterior tibial muscles of the kitten, as viewed in serial sections stained for lipids and succinic dehydrogenase.
    Hammarberg tC
    Acta Neurol Scand; 1974; 50(3):285-301. PubMed ID: 4134265
    [No Abstract]   [Full Text] [Related]  

  • 14. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection.
    Manske SL; Boyd SK; Zernicke RF
    Bone; 2010 Jan; 46(1):24-31. PubMed ID: 19853070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative succinate-dehydrogenase histochemistry. II. A comparison between visual and quantitative msucle fibre typing.
    Pool CW; Diegenbach PC; Ockeloen BJ
    Histochemistry; 1979; 64(3):263-72. PubMed ID: 93100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A histochemical and morphological study of skeletal muscle from obese hyperglycaemic ob/ob mice.
    Almond RE; Enser M
    Diabetologia; 1984 Sep; 27(3):407-13. PubMed ID: 6238863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of botulinum toxin on the pattern of innervation of skeletal muscle in the mouse.
    Duchen LW; Strich SJ
    Q J Exp Physiol Cogn Med Sci; 1968 Jan; 53(1):84-9. PubMed ID: 4297234
    [No Abstract]   [Full Text] [Related]  

  • 18. Postnatal growth and differentiation of muscle fibres in the mouse. II. A histochemical and morphometrical investigation of dystrophic muscle.
    Wirtz P; Loermans HM; Peer PG; Reintjes AG
    J Anat; 1983 Aug; 137 (Pt 1)(Pt 1):127-42. PubMed ID: 6630028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of new muscle fibres and tumours after injection of cultured myogenic cells.
    Wernig A; Irintchev A; Härtling A; Stephan G; Zimmermann K; Starzinski-Powitz A
    J Neurocytol; 1991 Dec; 20(12):982-97. PubMed ID: 1783945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of botulinum toxin on synapse formation and acetylcholine sensitivity in skeletal muscle in the newt.
    Sayers H; Tonge DA
    Q J Exp Physiol; 1985 Jan; 70(1):63-73. PubMed ID: 4011830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.