These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 4921071)
21. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 8. Survey of the effect of antibiotics of N-acetyl-phenylalanyl-puromycin formation: possible mechanism of chloramphenicol action. Pestka S Arch Biochem Biophys; 1970 Jan; 136(1):80-8. PubMed ID: 4907015 [No Abstract] [Full Text] [Related]
22. Studies on the formation of transfer ribonucleic acid-ribosome complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action. Pestka S Biochem Biophys Res Commun; 1969 Aug; 36(4):589-95. PubMed ID: 4897408 [No Abstract] [Full Text] [Related]
23. Studies on the nature of the G-factor binding site on the 50S ribosomal subunit. Bodley JW; Lin L Biochemistry; 1972 Feb; 11(5):782-6. PubMed ID: 4551093 [No Abstract] [Full Text] [Related]
24. [Elongation and termination of polypeptide chains]. Chapeville F; Haenni AL Bull Soc Chim Biol (Paris); 1969; 51(10):1459-77. PubMed ID: 4984616 [No Abstract] [Full Text] [Related]
25. Peptide chain elongation. Role of the S 1 factor in the pathway from S 3 -guanosine diphosphate complex to aminoacyl transfer ribonucleic acid-S 3 -guanosine triphosphate complex. Beaud G; Lengyel P Biochemistry; 1971 Dec; 10(26):4899-906. PubMed ID: 4944063 [No Abstract] [Full Text] [Related]
26. The formation and stabilization of 30S and 50S ribosome couples in Escherichia coli. Schlessinger D; Mangiarotti G; Apirion D Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1782-9. PubMed ID: 4867673 [No Abstract] [Full Text] [Related]
27. Polyphenylalanine synthesis and binding of phenylalanyl transfer ribonucleic acid by ribosomes from muscle of normal and diabetic rats. Castles JJ; Rolleston FS; Wool IG J Biol Chem; 1971 Mar; 246(6):1799-805. PubMed ID: 5547705 [No Abstract] [Full Text] [Related]
28. A complex between initiation factor IF2, guanosine triphosphate, and fMet-tRNA: an intermediate in initiation complex formation. Lockwood AH; Chakraborty PR; Maitra U Proc Natl Acad Sci U S A; 1971 Dec; 68(12):3122-6. PubMed ID: 4943554 [TBL] [Abstract][Full Text] [Related]
29. Studies on the role of guanosine triphosphate in polypeptide chain initiation in Escherichia coli. Dubnoff JS; Lockwood AH; Maitra U J Biol Chem; 1972 May; 247(9):2884-94. PubMed ID: 4554363 [No Abstract] [Full Text] [Related]
30. Protein synthesis during fungal spore germination. I. Characteristics of an in vitro phenylalanine incorporating system prepared from germinated spores of Botryodiplodia theobromae. Van Etten JL Arch Biochem Biophys; 1968 Apr; 125(1):13-21. PubMed ID: 5649510 [No Abstract] [Full Text] [Related]
31. Guanosine triphosphate interaction with an amino acid polymerization factor from E. coli. Allende JE; Seeds NW; Conway TW; Weissbach H Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1566-73. PubMed ID: 4867665 [No Abstract] [Full Text] [Related]
32. THE PUROMYCIN REACTION AND ITS RELATION TO PROTEIN SYNTHESIS. TRAUT RR; MONRO RE J Mol Biol; 1964 Oct; 10():63-72. PubMed ID: 14222897 [No Abstract] [Full Text] [Related]
33. Inhibition by multhiomycin of T factor- and GTP-dependent binding of phenylalanyl-tRNA to ribosomes and GTP hydrolysis associated with it. Tanaka T; Sakaguchi K; Yonehara H J Biochem; 1971 Jun; 69(6):1127-30. PubMed ID: 4933400 [No Abstract] [Full Text] [Related]
34. THE EFFECT OF UNIVALENT CATIONS ON THE BINDING OF SRNA TO THE TEMPLATE-RIBOSOME COMPLEX. SPYRIDES GJ Proc Natl Acad Sci U S A; 1964 Jun; 51(6):1220-6. PubMed ID: 14215648 [No Abstract] [Full Text] [Related]
35. Peptidyl transferase inhibitors alter the covalent reaction of BrAcPhe-tRNA with the E. coli ribosome. Oen H; Pellegrini M; Cantor CR FEBS Lett; 1974 Sep; 45(1):218-22. PubMed ID: 4606896 [No Abstract] [Full Text] [Related]
36. Inhibitors of protein synthesis by ribosomes of the 80-S type. Battaner E; Vazquez D Biochim Biophys Acta; 1971 Dec; 254(2):316-30. PubMed ID: 4944566 [No Abstract] [Full Text] [Related]
37. The interaction of transfer factor G, ribosomes, and guanosine nucleotides in the presence of fusidic acid. Brot N; Spears C; Weissbach H Arch Biochem Biophys; 1971 Mar; 143(1):286-96. PubMed ID: 4934881 [No Abstract] [Full Text] [Related]
38. Inhibitory effect of EF G and GMPPCP on peptidyl transferase. Otaka T; Kaji A FEBS Lett; 1974 Aug; 44(3):324-9. PubMed ID: 4606672 [No Abstract] [Full Text] [Related]
39. Release of transfer ribonucleic acid from ribosomes. A G factor and guanosine triphosphate-dependent reaction. Ishitsuka H; Kuriki Y; Kaji A J Biol Chem; 1970 Jul; 245(13):3346-51. PubMed ID: 4918149 [No Abstract] [Full Text] [Related]
40. Solvent and specificity. Binding and isoleucylation of phenylalanine transfer ribonucleic acid (Escherichia coli) by isoleucyl transfer ribonucleic acid synthetase from Escherichia coli. Yarus M Biochemistry; 1972 Jun; 11(12):2352-61. PubMed ID: 4337616 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]